今天,我的一个朋友在面试软件开发人员的职位时被问到以下问题:
给定两个字符串s1和s2,你将如何检查s1是否是s2的旋转版本?
例子:
如果s1 = "stackoverflow",则以下是它的一些旋转版本:
"tackoverflows"
"ackoverflowst"
"overflowstack"
其中“stackoverflwo”不是一个旋转的版本。
他给出的答案是:
取s2,找出s1的子字符串中最长的前缀,就能得到旋转的点。一旦你找到了那个点,在那个点打断s2得到s2a和s2b,然后检查是否连接(s2a,s2b) == s1
对我和我的朋友来说,这是一个很好的解决方案。但是面试官不这么认为。他要求一个更简单的解决办法。请告诉我在Java/C/ c++中你是如何做到这一点的?
提前谢谢你。
首先确保s1和s2的长度相同。然后检查s2是否是s1与s1连接的子字符串:
algorithm checkRotation(string s1, string s2)
if( len(s1) != len(s2))
return false
if( substring(s2,concat(s1,s1))
return true
return false
end
在Java中:
boolean isRotation(String s1,String s2) {
return (s1.length() == s2.length()) && ((s1+s1).indexOf(s2) != -1);
}
这是一个O(n) and in place算法。它对字符串的元素使用<操作符。当然不是我的。我把它从这里(网站是波兰语。我以前偶然发现过一次,现在在英语中找不到这样的东西,所以我展示了我拥有的:))。
bool equiv_cyc(const string &u, const string &v)
{
int n = u.length(), i = -1, j = -1, k;
if (n != v.length()) return false;
while( i<n-1 && j<n-1 )
{
k = 1;
while(k<=n && u[(i+k)%n]==v[(j+k)%n]) k++;
if (k>n) return true;
if (u[(i+k)%n] > v[(j+k)%n]) i += k; else j += k;
}
return false;
}