今天,我的一个朋友在面试软件开发人员的职位时被问到以下问题:

给定两个字符串s1和s2,你将如何检查s1是否是s2的旋转版本?

例子:

如果s1 = "stackoverflow",则以下是它的一些旋转版本:

"tackoverflows"
"ackoverflowst"
"overflowstack"

其中“stackoverflwo”不是一个旋转的版本。

他给出的答案是:

取s2,找出s1的子字符串中最长的前缀,就能得到旋转的点。一旦你找到了那个点,在那个点打断s2得到s2a和s2b,然后检查是否连接(s2a,s2b) == s1

对我和我的朋友来说,这是一个很好的解决方案。但是面试官不这么认为。他要求一个更简单的解决办法。请告诉我在Java/C/ c++中你是如何做到这一点的?

提前谢谢你。


当前回答

由于其他人已经提交了二次最坏情况时间复杂度解决方案,我将添加一个线性解决方案(基于KMP算法):

bool is_rotation(const string& str1, const string& str2)
{
  if(str1.size()!=str2.size())
    return false;

  vector<size_t> prefixes(str1.size(), 0);
  for(size_t i=1, j=0; i<str1.size(); i++) {
    while(j>0 && str1[i]!=str1[j])
      j=prefixes[j-1];
    if(str1[i]==str1[j]) j++;
    prefixes[i]=j;
  }

  size_t i=0, j=0;
  for(; i<str2.size(); i++) {
    while(j>0 && str2[i]!=str1[j])
      j=prefixes[j-1];
    if(str2[i]==str1[j]) j++;
  }
  for(i=0; i<str2.size(); i++) {
    if(j>=str1.size()) return true;
    while(j>0 && str2[i]!=str1[j])
      j=prefixes[j-1];
    if(str2[i]==str1[j]) j++;
  }

  return false;
}

工作示例

其他回答

编辑:如果你发现了,公认的答案显然比这个更优雅、更有效。我把这个答案留给了我所做的,如果我没有想到将原始字符串加倍的话。


我就用蛮力。首先检查长度,然后尝试每一个可能的旋转偏移。如果没有,则返回false;如果有,则立即返回true。

没有特别的连接需要——只需使用指针(C)或索引(Java),并在每个字符串中使用一个指针——从一个字符串的开头开始,在第二个字符串中使用当前的候选旋转偏移量,并在必要的地方进行换行。检查字符串中每个点的字符是否相等。如果你到达了第一个字符串的末尾,你就完成了。

它可能同样容易连接-尽管效率可能较低,至少在Java中是这样。

反转其中一个字符串。取两者的FFT(将它们视为简单的整数序列)。将结果逐点相乘。使用反FFT转换回来。如果弦是彼此旋转的,那么结果将只有一个峰值——峰值的位置将由它们相对于彼此旋转的多少来指示。

下面是一个使用正则表达式的例子,只是为了好玩:

boolean isRotation(String s1, String s2) {
   return (s1.length() == s2.length()) && (s1 + s2).matches("(.*)(.*)\\2\\1");
}

如果可以使用保证不在任何字符串中出现的特殊分隔符,可以使它更简单一些。

boolean isRotation(String s1, String s2) {
   // neither string can contain "="
   return (s1 + "=" + s2).matches("(.*)(.*)=\\2\\1");
}

你也可以使用有限重复的回溯:

boolean isRotation(String s1, String s2) {
   return (s1 + s2).matches(
      String.format("(.*)(.*)(?<=^.{%d})\\2\\1", s1.length())
   );
}
int rotation(char *s1,char *s2)
{
    int i,j,k,p=0,n;
    n=strlen(s1);
    k=strlen(s2);
    if (n!=k)
        return 0;
    for (i=0;i<n;i++)
    {
        if (s1[0]==s2[i])
        {
            for (j=i,k=0;k<n;k++,j++)
            {
                if (s1[k]==s2[j])
                    p++;
                if (j==n-1)
                    j=0;
            }
        }
    }
    if (n==p+1)
      return 1;
    else
      return 0;
}

由于其他人已经提交了二次最坏情况时间复杂度解决方案,我将添加一个线性解决方案(基于KMP算法):

bool is_rotation(const string& str1, const string& str2)
{
  if(str1.size()!=str2.size())
    return false;

  vector<size_t> prefixes(str1.size(), 0);
  for(size_t i=1, j=0; i<str1.size(); i++) {
    while(j>0 && str1[i]!=str1[j])
      j=prefixes[j-1];
    if(str1[i]==str1[j]) j++;
    prefixes[i]=j;
  }

  size_t i=0, j=0;
  for(; i<str2.size(); i++) {
    while(j>0 && str2[i]!=str1[j])
      j=prefixes[j-1];
    if(str2[i]==str1[j]) j++;
  }
  for(i=0; i<str2.size(); i++) {
    if(j>=str1.size()) return true;
    while(j>0 && str2[i]!=str1[j])
      j=prefixes[j-1];
    if(str2[i]==str1[j]) j++;
  }

  return false;
}

工作示例