在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
监督学习基本上是一种技术,其中机器学习的训练数据已经被标记,假设是一个简单的偶数分类器,在训练过程中你已经对数据进行了分类。因此它使用“LABELLED”数据。
相反,无监督学习是一种机器自己标记数据的技术。或者你可以说这是机器从头开始自己学习的情况。
其他回答
既然你问了这个非常基本的问题,似乎有必要详细说明机器学习本身是什么。
Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: a hypothetical non-machine learning algorithm for face detection in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but would "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.
这个特殊的人脸检测的例子是有监督的,这意味着你的例子必须被标记,或者明确地说哪些是人脸,哪些不是。
在无监督算法中,你的例子没有标记,也就是说你什么都不说。当然,在这种情况下,算法本身不能“发明”人脸是什么,但它可以尝试将数据聚类到不同的组中,例如,它可以区分人脸与风景非常不同,而风景与马非常不同。
Since another answer mentions it (though, in an incorrect way): there are "intermediate" forms of supervision, i.e. semi-supervised and active learning. Technically, these are supervised methods in which there is some "smart" way to avoid a large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a landscape and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised learning, there are two different algorithms which start with the labeled examples, and then "tell" each other the way they think about some large number of unlabeled data. From this "discussion" they learn.
监督学习:你有标记的数据,必须从中学习。例如,房屋数据和价格,然后学会预测价格
无监督学习:你必须找到趋势,然后预测,没有预先给出的标签。 例句:班里有不同的人,然后又来了一个新同学,那么这个新同学属于哪个组呢?
监督式学习
训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。
无监督学习
在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类
模式识别和机器学习(Bishop, 2006)
监督式学习:
监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。
我们提供训练数据,我们知道对某个输入的正确输出 我们知道输入和输出之间的关系
问题类别:
回归:预测连续输出中的结果=>将输入变量映射到某个连续函数。
例子:
给一个人的照片,预测他的年龄
分类:在离散输出中预测结果=>映射输入变量到离散类别
例子:
这个肿瘤癌变了吗?
无监督学习:
无监督学习从未被标记、分类或分类的测试数据中学习。无监督学习识别数据中的共性,并根据每个新数据中这些共性的存在与否做出反应。
我们可以根据数据中变量之间的关系对数据进行聚类,从而推导出这种结构。 基于预测结果没有反馈。
问题类别:
聚类:是对一组对象进行分组,使同一组(称为聚类)中的对象彼此之间(在某种意义上)比其他组(聚类)中的对象更相似。
例子:
收集100万个不同的基因,找到一种方法,自动将这些基因分组,这些基因在某种程度上是相似的,或因不同的变量(如寿命、位置、角色等)而相关。
这里列出了常用的用例。
数据挖掘中分类和聚类的区别?
引用:
Supervised_learning
Unsupervised_learning
来自coursera的机器学习
走向数据科学
机器学习: 它探索了可以从数据中学习并对数据进行预测的算法的研究和构建。这种算法通过从示例输入中构建模型来运行,以便做出数据驱动的预测或作为输出表示的决策,而不是严格地遵循静态的程序指令。
监督式学习: 这是从标记的训练数据推断出函数的机器学习任务。训练数据由一组训练示例组成。在监督学习中,每个例子都是一对,由一个输入对象(通常是一个向量)和一个期望的输出值(也称为监督信号)组成。监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。
由“老师”给计算机提供示例输入和它们期望的输出,目标是学习将输入映射到输出的一般规则。具体来说,有监督学习算法采用一组已知的输入数据和对数据(输出)的已知响应,并训练一个模型来生成对新数据响应的合理预测。
Unsupervised learning: It is learning without a teacher. One basic thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions of patterns.
在无监督学习中,没有基于预测结果的反馈,也就是说,没有老师来纠正你。在无监督学习方法下,不提供标记的示例,在学习过程中没有输出的概念。因此,由学习方案/模型来寻找模式或发现输入数据的组
你应该使用无监督学习方法,当你需要一个大的 训练你的模型的数据量,以及意愿和能力 去实验和探索,当然这是一个不太好的挑战 通过更成熟的方法解决。无监督学习就是这样 可以学习比监督更大更复杂的模型 学习。这里有一个很好的例子
.
推荐文章
- 关于如何将数据集划分为训练集和验证集,是否存在经验法则?
- 在scikit-learn中保存分类器到磁盘
- 如何解释机器学习模型的损失和准确性
- 线性回归和逻辑回归的区别是什么?
- 监督学习和无监督学习的区别是什么?
- 如何在Python中实现Softmax函数
- 最好的战舰AI是什么?
- 吃豆人:眼睛如何找到回到怪物洞的路?
- 将索引数组转换为NumPy中的单热编码数组
- 人工神经网络相对于支持向量机的优势是什么?
- 在TensorFlow中logits这个词是什么意思?
- "你是什么意思?"算法的工作吗?
- "你是什么意思?"算法的工作吗?
- 什么是logit ?softmax和softmax_cross_entropy_with_logits有什么区别?
- 训练神经网络时的Epoch vs Iteration