在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

已经有很多答案可以详细解释这些差异。我在codeacademy上找到了这些动图,它们经常能帮助我有效地解释它们之间的差异。

监督式学习

请注意,训练图像在这里有标签,并且模型正在学习图像的名称。

无监督学习

注意,这里所做的只是分组(聚类),模型不知道任何图像。

其他回答

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。

监督式学习

无监督学习

例子:

监督式学习:

一袋苹果 一个橙色的袋子 =>构建模型 一个混合了苹果和橘子的袋子。 请分类

无监督学习:

一个混合了苹果和橘子的袋子。 =>构建模型 另一个喜忧参半的情况 请分类

例如,训练神经网络通常是监督学习:你告诉网络你输入的特征向量对应于哪个类。

聚类是无监督学习:你让算法决定如何将样本分组到具有共同属性的类中。

另一个无监督学习的例子是Kohonen的自组织地图。

我尽量简单点。

监督学习:在这种学习技术中,我们得到一个数据集,系统已经知道该数据集的正确输出。这里,我们的系统通过预测自己的值来学习。然后,它通过使用代价函数来检查其预测与实际输出的接近程度,从而进行准确性检查。

无监督学习:在这种方法中,我们很少或根本不知道我们的结果是什么。因此,我们从不知道变量影响的数据中推导出结构。 我们根据数据中变量之间的关系对数据进行聚类,从而形成结构。 在这里,我们没有基于预测的反馈。

监督学习可以根据训练过程中的学习,将一个新项目标记为训练过的标签之一。您需要提供大量的训练数据集、验证数据集和测试数据集。如果你提供数字的像素图像向量以及带有标签的训练数据,那么它就可以识别数字。

无监督学习不需要训练数据集。在无监督学习中,它可以根据输入向量的差异将项目分组到不同的簇中。如果你提供像素的数字图像向量,并要求它分为10个类别,它可能会这样做。但它知道如何标注,因为你没有提供培训标签。