在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
其他回答
监督式学习
你有输入x和目标输出t。所以你训练算法泛化到缺失的部分。它被监督是因为目标是给定的。你是管理员,告诉算法:对于例子x,你应该输出t!
无监督学习
虽然分割、聚类和压缩通常是按照这个方向计算的,但我很难给出一个好的定义。
让我们以自动编码器压缩为例。当你只有给定的输入x时,人类工程师是如何告诉算法目标也是x的。所以在某种意义上,这与监督学习没有什么不同。
对于聚类和分割,我不太确定它是否真的符合机器学习的定义(见其他问题)。
监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。
示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。
无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。
例如:数据挖掘聚类算法。
例如,训练神经网络通常是监督学习:你告诉网络你输入的特征向量对应于哪个类。
聚类是无监督学习:你让算法决定如何将样本分组到具有共同属性的类中。
另一个无监督学习的例子是Kohonen的自组织地图。
监督学习基本上是一种技术,其中机器学习的训练数据已经被标记,假设是一个简单的偶数分类器,在训练过程中你已经对数据进行了分类。因此它使用“LABELLED”数据。
相反,无监督学习是一种机器自己标记数据的技术。或者你可以说这是机器从头开始自己学习的情况。
监督式学习
监督学习是基于对数据样本的训练 来自已分配正确分类的数据源。 这种技术用于前馈或多层 感知器(MLP)模型。这些MLP有三个特点 特点:
一层或多层不属于输入的隐藏神经元 或者网络的输出层,使网络能够学习和 解决任何复杂的问题 神经元活动所反映的非线性为 可微的, 网络的互联模型表现出高度的互联性 连通性。
These characteristics along with learning through training solve difficult and diverse problems. Learning through training in a supervised ANN model also called as error backpropagation algorithm. The error correction-learning algorithm trains the network based on the input-output samples and finds error signal, which is the difference of the output calculated and the desired output and adjusts the synaptic weights of the neurons that is proportional to the product of the error signal and the input instance of the synaptic weight. Based on this principle, error back propagation learning occurs in two passes:
传球前进:
这里,输入向量被呈现给网络。这个输入信号向前传播,一个神经元一个神经元地通过网络,并出现在输出端 网络作为输出信号:y(n) = φ(v(n)),其中v(n)是神经元的诱导局部场,定义为v(n) =Σ w(n)y(n)。在输出层o(n)计算的输出与期望的响应d(n)进行比较,并找到该神经元的误差e(n)。在这一过程中,神经网络的突触权重保持不变。
向后传递:
产生于该层输出神经元的错误信号通过网络向后传播。这将计算每个层中每个神经元的局部梯度,并允许网络的突触权值按照delta规则发生变化,如下:
Δw(n) = η * δ(n) * y(n).
这种递归计算继续进行,对每个输入模式进行向前传递和向后传递,直到网络收敛。
人工神经网络的监督学习模式是有效的,可以解决分类、植物控制、预测、预测、机器人等线性和非线性问题。
无监督学习
Self-Organizing neural networks learn using unsupervised learning algorithm to identify hidden patterns in unlabelled input data. This unsupervised refers to the ability to learn and organize information without providing an error signal to evaluate the potential solution. The lack of direction for the learning algorithm in unsupervised learning can sometime be advantageous, since it lets the algorithm to look back for patterns that have not been previously considered. The main characteristics of Self-Organizing Maps (SOM) are:
它将任意维度的输入信号模式转换为 一维或二维映射,并自适应地执行这种转换 该网络表示具有单一的前馈结构 计算层由一排排排列的神经元组成 列。在表示的每个阶段,每个输入信号都被保留 在适当的情况下, 处理紧密相关信息的神经元是紧密的 它们一起通过突触连接进行交流。
计算层也被称为竞争层,因为该层中的神经元相互竞争变得活跃。因此,这种学习算法被称为竞争算法。SOM中的无监督算法 工作分为三个阶段:
竞争阶段:
对于呈现给网络的每一个输入模式x,计算与突触权值w的内积,竞争层神经元找到一个诱发神经元竞争的判别函数,在欧氏距离上与输入权值向量接近的突触权值向量被宣布为竞争获胜者。这个神经元被称为最佳匹配神经元,
i.e. x = arg min ║x - w║.
合作的阶段:
获胜的神经元决定了合作神经元的拓扑邻域h的中心。这是通过横向相互作用d之间 合作的神经元。这种拓扑邻域在一段时间内减小了它的大小。
适应阶段:
使获胜的神经元及其邻近神经元根据输入模式增加其判别函数的个体值 通过适当的突触权重调整,
Δw = ηh(x)(x –w).
在训练模式重复呈现后,由于邻域更新,神经网络的权重向量倾向于跟随输入模式的分布,因此神经网络在没有监督的情况下进行学习。
自组织模型自然地代表了神经生物学行为,因此被用于许多现实世界的应用,如聚类,语音识别,纹理分割,矢量编码等。
参考。