在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

既然你问了这个非常基本的问题,似乎有必要详细说明机器学习本身是什么。

Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: a hypothetical non-machine learning algorithm for face detection in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but would "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

这个特殊的人脸检测的例子是有监督的,这意味着你的例子必须被标记,或者明确地说哪些是人脸,哪些不是。

在无监督算法中,你的例子没有标记,也就是说你什么都不说。当然,在这种情况下,算法本身不能“发明”人脸是什么,但它可以尝试将数据聚类到不同的组中,例如,它可以区分人脸与风景非常不同,而风景与马非常不同。

Since another answer mentions it (though, in an incorrect way): there are "intermediate" forms of supervision, i.e. semi-supervised and active learning. Technically, these are supervised methods in which there is some "smart" way to avoid a large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a landscape and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised learning, there are two different algorithms which start with the labeled examples, and then "tell" each other the way they think about some large number of unlabeled data. From this "discussion" they learn.

其他回答

机器学习是一个让机器模仿人类行为的领域。

你训练机器就像训练婴儿一样。人类学习、识别特征、识别模式并训练自己的方式,就像你通过输入各种特征的数据来训练机器一样。机器算法识别数据中的模式,并将其分类到特定的类别。

机器学习大致分为两类,有监督学习和无监督学习。

监督学习是一个概念,你有相应的目标值(输出)的输入向量/数据。另一方面,无监督学习的概念是只有输入向量/数据,没有任何相应的目标值。

监督学习的一个例子是手写数字识别,其中有对应数字[0-9]的数字图像,而非监督学习的一个例子是根据购买行为对客户进行分组。

在监督学习中,为输入x提供预期结果y(即,当输入x时模型应该产生的输出),这通常被称为对应输入x的“类”(或“标签”)。

在无监督学习中,不提供示例x的“类”。因此,无监督学习可以被认为是在未标记的数据集中寻找“隐藏结构”。

监督学习的方法包括:

分类(1R、朴素贝叶斯、决策树学习算法等) 如ID3 CART,等等) 数值预测

无监督学习的方法包括:

聚类(k -均值,层次聚类) 关联规则学习

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

既然你问了这个非常基本的问题,似乎有必要详细说明机器学习本身是什么。

Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: a hypothetical non-machine learning algorithm for face detection in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but would "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

这个特殊的人脸检测的例子是有监督的,这意味着你的例子必须被标记,或者明确地说哪些是人脸,哪些不是。

在无监督算法中,你的例子没有标记,也就是说你什么都不说。当然,在这种情况下,算法本身不能“发明”人脸是什么,但它可以尝试将数据聚类到不同的组中,例如,它可以区分人脸与风景非常不同,而风景与马非常不同。

Since another answer mentions it (though, in an incorrect way): there are "intermediate" forms of supervision, i.e. semi-supervised and active learning. Technically, these are supervised methods in which there is some "smart" way to avoid a large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a landscape and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised learning, there are two different algorithms which start with the labeled examples, and then "tell" each other the way they think about some large number of unlabeled data. From this "discussion" they learn.

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。