在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

既然你问了这个非常基本的问题,似乎有必要详细说明机器学习本身是什么。

Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: a hypothetical non-machine learning algorithm for face detection in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but would "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.

这个特殊的人脸检测的例子是有监督的,这意味着你的例子必须被标记,或者明确地说哪些是人脸,哪些不是。

在无监督算法中,你的例子没有标记,也就是说你什么都不说。当然,在这种情况下,算法本身不能“发明”人脸是什么,但它可以尝试将数据聚类到不同的组中,例如,它可以区分人脸与风景非常不同,而风景与马非常不同。

Since another answer mentions it (though, in an incorrect way): there are "intermediate" forms of supervision, i.e. semi-supervised and active learning. Technically, these are supervised methods in which there is some "smart" way to avoid a large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a landscape and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised learning, there are two different algorithms which start with the labeled examples, and then "tell" each other the way they think about some large number of unlabeled data. From this "discussion" they learn.

其他回答

已经有很多答案可以详细解释这些差异。我在codeacademy上找到了这些动图,它们经常能帮助我有效地解释它们之间的差异。

监督式学习

请注意,训练图像在这里有标签,并且模型正在学习图像的名称。

无监督学习

注意,这里所做的只是分组(聚类),模型不知道任何图像。

机器学习是一个让机器模仿人类行为的领域。

你训练机器就像训练婴儿一样。人类学习、识别特征、识别模式并训练自己的方式,就像你通过输入各种特征的数据来训练机器一样。机器算法识别数据中的模式,并将其分类到特定的类别。

机器学习大致分为两类,有监督学习和无监督学习。

监督学习是一个概念,你有相应的目标值(输出)的输入向量/数据。另一方面,无监督学习的概念是只有输入向量/数据,没有任何相应的目标值。

监督学习的一个例子是手写数字识别,其中有对应数字[0-9]的数字图像,而非监督学习的一个例子是根据购买行为对客户进行分组。

监督式学习

监督学习是我们知道原始输入的输出,即数据被标记,以便在机器学习模型的训练期间,它将了解它需要在给定的输出中检测什么,并且它将指导系统在训练期间检测预先标记的对象,在此基础上,它将检测我们在训练中提供的类似对象。

在这里,算法将知道数据的结构和模式。监督学习用于分类

例如,我们可以有一个不同的物体,其形状是正方形,圆形,三角形,我们的任务是排列相同类型的形状 标记的数据集已经标记了所有的形状,我们将在该数据集上训练机器学习模型,在训练数据集的基础上,它将开始检测形状。

联合国监管下学习

无监督学习是一种最终结果未知的无指导学习,它将对数据集进行聚类,并基于对象的相似属性将对象划分在不同的簇上并检测对象。

算法将在原始数据中搜索不同的模式,并在此基础上对数据进行聚类。无监督学习用于聚类。

例如,我们可以有多种形状的不同物体,正方形,圆形,三角形,所以它会根据对象属性进行分组,如果一个物体有四个边,它会认为它是正方形,如果它有三个边,三角形,如果没有边比圆形,这里的数据没有标记,它会学习自己检测各种形状

机器学习: 它探索了可以从数据中学习并对数据进行预测的算法的研究和构建。这种算法通过从示例输入中构建模型来运行,以便做出数据驱动的预测或作为输出表示的决策,而不是严格地遵循静态的程序指令。

监督式学习: 这是从标记的训练数据推断出函数的机器学习任务。训练数据由一组训练示例组成。在监督学习中,每个例子都是一对,由一个输入对象(通常是一个向量)和一个期望的输出值(也称为监督信号)组成。监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。

由“老师”给计算机提供示例输入和它们期望的输出,目标是学习将输入映射到输出的一般规则。具体来说,有监督学习算法采用一组已知的输入数据和对数据(输出)的已知响应,并训练一个模型来生成对新数据响应的合理预测。

Unsupervised learning: It is learning without a teacher. One basic thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions of patterns.

在无监督学习中,没有基于预测结果的反馈,也就是说,没有老师来纠正你。在无监督学习方法下,不提供标记的示例,在学习过程中没有输出的概念。因此,由学习方案/模型来寻找模式或发现输入数据的组

你应该使用无监督学习方法,当你需要一个大的 训练你的模型的数据量,以及意愿和能力 去实验和探索,当然这是一个不太好的挑战 通过更成熟的方法解决。无监督学习就是这样 可以学习比监督更大更复杂的模型 学习。这里有一个很好的例子

.

监督式学习: 假设一个孩子去了幼儿园。这里老师给他看了3个玩具——房子,球和汽车。现在老师给了他10个玩具。 他会根据他以前的经验把它们分为房子,球和汽车3个盒子。 因此,孩子首先是由老师监督,因为他们在几组比赛中答对了答案。然后用不知名的玩具对他进行测试。

无监督学习: 还是幼儿园的例子。给一个孩子10个玩具。他被告知要分割类似的部分。 因此,根据形状、大小、颜色、功能等特征,他会尝试将A、B、C分成3组,并将它们分组。

监理这个词的意思是你给机器提供监督/指令,帮助它找到答案。一旦它学会指令,就可以很容易地预测新的情况。

无监督意味着没有监督或指示如何找到答案/标签,机器将利用它的智能在我们的数据中找到一些模式。在这里,它不会进行预测,它只会尝试寻找具有相似数据的集群。