在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督学习可以根据训练过程中的学习,将一个新项目标记为训练过的标签之一。您需要提供大量的训练数据集、验证数据集和测试数据集。如果你提供数字的像素图像向量以及带有标签的训练数据,那么它就可以识别数字。

无监督学习不需要训练数据集。在无监督学习中,它可以根据输入向量的差异将项目分组到不同的簇中。如果你提供像素的数字图像向量,并要求它分为10个类别,它可能会这样做。但它知道如何标注,因为你没有提供培训标签。

其他回答

监督式机器学习 算法从训练数据集中学习的过程 预测产出。”

预测输出精度与训练数据(长度)成正比

监督学习是指你有输入变量(x)(训练数据集)和输出变量(Y)(测试数据集),你使用一种算法来学习从输入到输出的映射函数。

Y = f(X)

主要类型:

分类(离散y轴) 预测(连续y轴)

算法:

分类算法: 神经网络 Naïve贝叶斯分类器 费雪线性判别 然而, 决策树 超级向量机 预测算法: 最近的邻居 线性回归,多元回归

应用领域:

将电子邮件分类为垃圾邮件 患者是否有 疾病与否 语音识别 预测HR是否会选择特定的候选人 预测股票市场价格

我可以给你们举个例子。

假设您需要识别哪些车辆是汽车,哪些是摩托车。

在监督学习的情况下,你的输入(训练)数据集需要被标记,也就是说,对于你的输入(训练)数据集中的每个输入元素,你应该指定它是代表一辆汽车还是一辆摩托车。

在无监督学习的情况下,你不标记输入。无监督模型将输入聚类到基于相似特征/属性的聚类中。所以,在这种情况下,没有像“car”这样的标签。

在监督学习中,为输入x提供预期结果y(即,当输入x时模型应该产生的输出),这通常被称为对应输入x的“类”(或“标签”)。

在无监督学习中,不提供示例x的“类”。因此,无监督学习可以被认为是在未标记的数据集中寻找“隐藏结构”。

监督学习的方法包括:

分类(1R、朴素贝叶斯、决策树学习算法等) 如ID3 CART,等等) 数值预测

无监督学习的方法包括:

聚类(k -均值,层次聚类) 关联规则学习

Supervised Learning is basically where you have input variables(x) and output variable(y) and use algorithm to learn the mapping function from input to the output. The reason why we called this as supervised is because algorithm learns from the training dataset, the algorithm iteratively makes predictions on the training data. Supervised have two types-Classification and Regression. Classification is when the output variable is category like yes/no, true/false. Regression is when the output is real values like height of person, Temperature etc.

联合国监督学习是指我们只有输入数据(X),没有输出变量。 这被称为无监督学习,因为与上面的监督学习不同,它没有正确的答案,也没有老师。算法由它们自己的设计来发现和呈现数据中有趣的结构。

无监督学习的类型有聚类和关联。

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。