在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式机器学习 算法从训练数据集中学习的过程 预测产出。”

预测输出精度与训练数据(长度)成正比

监督学习是指你有输入变量(x)(训练数据集)和输出变量(Y)(测试数据集),你使用一种算法来学习从输入到输出的映射函数。

Y = f(X)

主要类型:

分类(离散y轴) 预测(连续y轴)

算法:

分类算法: 神经网络 Naïve贝叶斯分类器 费雪线性判别 然而, 决策树 超级向量机 预测算法: 最近的邻居 线性回归,多元回归

应用领域:

将电子邮件分类为垃圾邮件 患者是否有 疾病与否 语音识别 预测HR是否会选择特定的候选人 预测股票市场价格

其他回答

我可以给你们举个例子。

假设您需要识别哪些车辆是汽车,哪些是摩托车。

在监督学习的情况下,你的输入(训练)数据集需要被标记,也就是说,对于你的输入(训练)数据集中的每个输入元素,你应该指定它是代表一辆汽车还是一辆摩托车。

在无监督学习的情况下,你不标记输入。无监督模型将输入聚类到基于相似特征/属性的聚类中。所以,在这种情况下,没有像“car”这样的标签。

在简单 监督学习是一种机器学习问题,其中我们有一些标签,通过使用这些标签,我们实现了回归和分类等算法。分类应用于我们的输出形式类似于 0或1,真/假,是/否。回归是应用于实际价值的地方,比如房价

无监督学习是一种机器学习问题,其中我们没有任何标签,意味着我们只有一些数据,非结构化数据,我们必须使用各种无监督算法对数据进行聚类(数据分组)

监督式学习: 假设一个孩子去了幼儿园。这里老师给他看了3个玩具——房子,球和汽车。现在老师给了他10个玩具。 他会根据他以前的经验把它们分为房子,球和汽车3个盒子。 因此,孩子首先是由老师监督,因为他们在几组比赛中答对了答案。然后用不知名的玩具对他进行测试。

无监督学习: 还是幼儿园的例子。给一个孩子10个玩具。他被告知要分割类似的部分。 因此,根据形状、大小、颜色、功能等特征,他会尝试将A、B、C分成3组,并将它们分组。

监理这个词的意思是你给机器提供监督/指令,帮助它找到答案。一旦它学会指令,就可以很容易地预测新的情况。

无监督意味着没有监督或指示如何找到答案/标签,机器将利用它的智能在我们的数据中找到一些模式。在这里,它不会进行预测,它只会尝试寻找具有相似数据的集群。

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。

监督式学习

无监督学习

例子:

监督式学习:

一袋苹果 一个橙色的袋子 =>构建模型 一个混合了苹果和橘子的袋子。 请分类

无监督学习:

一个混合了苹果和橘子的袋子。 =>构建模型 另一个喜忧参半的情况 请分类