在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式机器学习 算法从训练数据集中学习的过程 预测产出。”

预测输出精度与训练数据(长度)成正比

监督学习是指你有输入变量(x)(训练数据集)和输出变量(Y)(测试数据集),你使用一种算法来学习从输入到输出的映射函数。

Y = f(X)

主要类型:

分类(离散y轴) 预测(连续y轴)

算法:

分类算法: 神经网络 Naïve贝叶斯分类器 费雪线性判别 然而, 决策树 超级向量机 预测算法: 最近的邻居 线性回归,多元回归

应用领域:

将电子邮件分类为垃圾邮件 患者是否有 疾病与否 语音识别 预测HR是否会选择特定的候选人 预测股票市场价格

其他回答

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。

监督学习:你有标记的数据,必须从中学习。例如,房屋数据和价格,然后学会预测价格

无监督学习:你必须找到趋势,然后预测,没有预先给出的标签。 例句:班里有不同的人,然后又来了一个新同学,那么这个新同学属于哪个组呢?

监督式机器学习 算法从训练数据集中学习的过程 预测产出。”

预测输出精度与训练数据(长度)成正比

监督学习是指你有输入变量(x)(训练数据集)和输出变量(Y)(测试数据集),你使用一种算法来学习从输入到输出的映射函数。

Y = f(X)

主要类型:

分类(离散y轴) 预测(连续y轴)

算法:

分类算法: 神经网络 Naïve贝叶斯分类器 费雪线性判别 然而, 决策树 超级向量机 预测算法: 最近的邻居 线性回归,多元回归

应用领域:

将电子邮件分类为垃圾邮件 患者是否有 疾病与否 语音识别 预测HR是否会选择特定的候选人 预测股票市场价格

我一直认为无监督学习和有监督学习之间的区别是随意的,有点令人困惑。这两种情况之间没有真正的区别,相反,在一系列情况下,算法可以或多或少地“监督”。半监督学习的存在是界限模糊的一个明显例子。

我倾向于认为监督是对算法提供关于应该首选哪些解决方案的反馈。对于传统的监督设置,比如垃圾邮件检测,你告诉算法“不要在训练集上犯任何错误”;对于传统的无监督设置,比如聚类,你告诉算法“彼此接近的点应该在同一个聚类中”。很巧的是,第一种反馈形式比后者更具体。

简而言之,当有人说“有监督”时,想想分类,当他们说“无监督”时,想想聚类,尽量不要过于担心除此之外的问题。

监督学习:你给出各种标记的示例数据作为输入,以及正确的答案。该算法将从中学习,并开始根据输入预测正确的结果。示例:电子邮件垃圾邮件过滤器

无监督学习:你只提供数据,不告诉任何东西——比如标签或正确答案。算法自动分析数据中的模式。例如:谷歌新闻