在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。
示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。
无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。
例如:数据挖掘聚类算法。
其他回答
监督学习基本上是一种技术,其中机器学习的训练数据已经被标记,假设是一个简单的偶数分类器,在训练过程中你已经对数据进行了分类。因此它使用“LABELLED”数据。
相反,无监督学习是一种机器自己标记数据的技术。或者你可以说这是机器从头开始自己学习的情况。
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
机器学习是一个让机器模仿人类行为的领域。
你训练机器就像训练婴儿一样。人类学习、识别特征、识别模式并训练自己的方式,就像你通过输入各种特征的数据来训练机器一样。机器算法识别数据中的模式,并将其分类到特定的类别。
机器学习大致分为两类,有监督学习和无监督学习。
监督学习是一个概念,你有相应的目标值(输出)的输入向量/数据。另一方面,无监督学习的概念是只有输入向量/数据,没有任何相应的目标值。
监督学习的一个例子是手写数字识别,其中有对应数字[0-9]的数字图像,而非监督学习的一个例子是根据购买行为对客户进行分组。
监督式学习
训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。
无监督学习
在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类
模式识别和机器学习(Bishop, 2006)
监督式学习
你有输入x和目标输出t。所以你训练算法泛化到缺失的部分。它被监督是因为目标是给定的。你是管理员,告诉算法:对于例子x,你应该输出t!
无监督学习
虽然分割、聚类和压缩通常是按照这个方向计算的,但我很难给出一个好的定义。
让我们以自动编码器压缩为例。当你只有给定的输入x时,人类工程师是如何告诉算法目标也是x的。所以在某种意义上,这与监督学习没有什么不同。
对于聚类和分割,我不太确定它是否真的符合机器学习的定义(见其他问题)。