如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?


当前回答

PHP

if ((($x - $center_x) ** 2 + ($y - $center_y) ** 2) <=  $radius **2) {
    return true; // Inside
} else {
    return false; // Outside
}

其他回答

如前所述,为了显示点是否在圆中,我们可以使用下面的方法

if ((x-center_x)^2 + (y - center_y)^2 < radius^2) {
    in.circle <- "True"
} else {
    in.circle <- "False"
}

要用图形表示,我们可以使用:

plot(x, y, asp = 1, xlim = c(-1, 1), ylim = c(-1, 1), col = ifelse((x-center_x)^2 + (y - center_y)^2 < radius^2,'green','red'))
draw.circle(0, 0, 1, nv = 1000, border = NULL, col = NA, lty = 1, lwd = 1)

你应该检查圆心到点的距离是否小于半径

使用Python

if (x-center_x)**2 + (y-center_y)**2 <= radius**2:
    # inside circle

求圆心到所给点之间的距离。如果它们之间的距离小于半径,则该点在圆内。 如果它们之间的距离等于圆的半径,那么这个点就在圆的周长上。 如果距离大于半径,则该点在圆外。

int d = r^2 - ((center_x-x)^2 + (center_y-y)^2);

if(d>0)
  print("inside");
else if(d==0)
  print("on the circumference");
else
  print("outside");

下面的方程是一个表达式,测试一个点是否在一个给定的圆内,其中xP和yP是点的坐标,xC和yC是圆心的坐标,R是给定圆的半径。

如果上述表达式为真,则该点在圆内。

下面是一个c#实现的示例:

    public static bool IsWithinCircle(PointF pC, Point pP, Single fRadius){
        return Distance(pC, pP) <= fRadius;
    }

    public static Single Distance(PointF p1, PointF p2){
        Single dX = p1.X - p2.X;
        Single dY = p1.Y - p2.Y;
        Single multi = dX * dX + dY * dY;
        Single dist = (Single)Math.Round((Single)Math.Sqrt(multi), 3);

        return (Single)dist;
    }

我使用下面的代码为初学者像我一样:)。

公共类incirkel {

public static void main(String[] args) {
    int x; 
    int y; 
    int middelx; 
    int middely; 
    int straal; {

// Adjust the coordinates of x and y 
x = -1;
y = -2;

// Adjust the coordinates of the circle
middelx = 9; 
middely = 9;
straal =  10;

{
    //When x,y is within the circle the message below will be printed
    if ((((middelx - x) * (middelx - x)) 
                    + ((middely - y) * (middely - y))) 
                    < (straal * straal)) {
                        System.out.println("coordinaten x,y vallen binnen cirkel");
    //When x,y is NOT within the circle the error message below will be printed
    } else {
        System.err.println("x,y coordinaten vallen helaas buiten de cirkel");
    } 
}



    }
}}