如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?


当前回答

boolean isInRectangle(double centerX, double centerY, double radius, 
    double x, double y)
{
        return x >= centerX - radius && x <= centerX + radius && 
            y >= centerY - radius && y <= centerY + radius;
}    

//test if coordinate (x, y) is within a radius from coordinate (center_x, center_y)
public boolean isPointInCircle(double centerX, double centerY, 
    double radius, double x, double y)
{
    if(isInRectangle(centerX, centerY, radius, x, y))
    {
        double dx = centerX - x;
        double dy = centerY - y;
        dx *= dx;
        dy *= dy;
        double distanceSquared = dx + dy;
        double radiusSquared = radius * radius;
        return distanceSquared <= radiusSquared;
    }
    return false;
}

这样效率更高,可读性更强。它避免了昂贵的平方根运算。我还添加了一个检查,以确定点是否在圆的边界矩形内。

矩形检查是不必要的,除非有许多点或许多圆。如果大多数点都在圆圈内,边框检查实际上会使事情变慢!

像往常一样,一定要考虑您的用例。

其他回答

这与Jason Punyon提到的解决方案相同,但它包含伪代码示例和更多细节。写完这篇文章后,我看到了他的回答,但我不想删除我的。

我认为最容易理解的方法是先计算圆心到点的距离。我会用这个公式:

d = sqrt((circle_x - x)^2 + (circle_y - y)^2)

然后,简单地比较公式的结果,距离(d),与半径。如果距离(d)小于或等于半径(r),则该点在圆内(如果d和r相等,则在圆的边缘)。

下面是一个伪代码示例,可以很容易地转换为任何编程语言:

function is_in_circle(circle_x, circle_y, r, x, y)
{
    d = sqrt((circle_x - x)^2 + (circle_y - y)^2);
    return d <= r;
}

其中circle_x和circle_y是圆的中心坐标,r是圆的半径,x和y是点的坐标。

下面的方程是一个表达式,测试一个点是否在一个给定的圆内,其中xP和yP是点的坐标,xC和yC是圆心的坐标,R是给定圆的半径。

如果上述表达式为真,则该点在圆内。

下面是一个c#实现的示例:

    public static bool IsWithinCircle(PointF pC, Point pP, Single fRadius){
        return Distance(pC, pP) <= fRadius;
    }

    public static Single Distance(PointF p1, PointF p2){
        Single dX = p1.X - p2.X;
        Single dY = p1.Y - p2.Y;
        Single multi = dX * dX + dY * dY;
        Single dist = (Single)Math.Round((Single)Math.Sqrt(multi), 3);

        return (Single)dist;
    }

计算距离

D = Math.Sqrt(Math.Pow(center_x - x, 2) + Math.Pow(center_y - y, 2))
return D <= radius

这是用c#写的……转换为python中使用…

一般来说,x和y必须满足(x - center_x)²+ (y - center_y)²< radius²。

请注意,满足上式<的点被==替换为圆上的点,满足上式<的点被>替换为圆外的点。

进入3D世界,如果你想检查一个3D点是否在单位球面上,你最终会做类似的事情。在2D中工作所需要的就是使用2D矢量运算。

    public static bool Intersects(Vector3 point, Vector3 center, float radius)
    {
        Vector3 displacementToCenter = point - center;

        float radiusSqr = radius * radius;

        bool intersects = displacementToCenter.magnitude < radiusSqr;

        return intersects;
    }