如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?
当前回答
一般来说,x和y必须满足(x - center_x)²+ (y - center_y)²< radius²。
请注意,满足上式<的点被==替换为圆上的点,满足上式<的点被>替换为圆外的点。
其他回答
你可以用毕达哥拉斯来测量你的点到中心之间的距离,看看它是否低于半径:
def in_circle(center_x, center_y, radius, x, y):
dist = math.sqrt((center_x - x) ** 2 + (center_y - y) ** 2)
return dist <= radius
编辑(向保罗致敬)
实际上,取平方根通常比取平方根便宜得多,因为我们只对排序感兴趣,我们当然可以放弃取平方根:
def in_circle(center_x, center_y, radius, x, y):
square_dist = (center_x - x) ** 2 + (center_y - y) ** 2
return square_dist <= radius ** 2
此外,Jason注意到<=应该被<取代,根据用法,这实际上可能是有意义的,尽管我认为这在严格的数学意义上是不正确的。我接受纠正。
如上所述,使用欧几里得距离。
from math import hypot
def in_radius(c_x, c_y, r, x, y):
return math.hypot(c_x-x, c_y-y) <= r
如前所述,为了显示点是否在圆中,我们可以使用下面的方法
if ((x-center_x)^2 + (y - center_y)^2 < radius^2) {
in.circle <- "True"
} else {
in.circle <- "False"
}
要用图形表示,我们可以使用:
plot(x, y, asp = 1, xlim = c(-1, 1), ylim = c(-1, 1), col = ifelse((x-center_x)^2 + (y - center_y)^2 < radius^2,'green','red'))
draw.circle(0, 0, 1, nv = 1000, border = NULL, col = NA, lty = 1, lwd = 1)
PHP
if ((($x - $center_x) ** 2 + ($y - $center_y) ** 2) <= $radius **2) {
return true; // Inside
} else {
return false; // Outside
}
下面的方程是一个表达式,测试一个点是否在一个给定的圆内,其中xP和yP是点的坐标,xC和yC是圆心的坐标,R是给定圆的半径。
如果上述表达式为真,则该点在圆内。
下面是一个c#实现的示例:
public static bool IsWithinCircle(PointF pC, Point pP, Single fRadius){
return Distance(pC, pP) <= fRadius;
}
public static Single Distance(PointF p1, PointF p2){
Single dX = p1.X - p2.X;
Single dY = p1.Y - p2.Y;
Single multi = dX * dX + dY * dY;
Single dist = (Single)Math.Round((Single)Math.Sqrt(multi), 3);
return (Single)dist;
}