在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。
其他回答
效果很好
> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]
计算模式大多是在有因素变量的情况下才可以使用
labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])
HouseVotes84是在“mlbench”包中可用的数据集。
它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。
还有一个解决方案,适用于数字和字符/因子数据:
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。
如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):
Modes <- function(x) {
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
另一个简单的选项是使用rle来给出所有按频率排序的值:
df = as.data.frame(unclass(rle(sort(mySamples))))
df = df[order(-df$lengths),]
head(df)