在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

添加raster::modal()作为一个选项,不过请注意,raster是一个很大的包,如果不做地理空间方面的工作,可能不值得安装。

源代码可以从https://github.com/rspatial/raster/blob/master/src/modal.cpp和https://github.com/rspatial/raster/blob/master/R/modal.R中取出,放入个人R包中,供那些特别热衷的人使用。

其他回答

估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:

estimate_mode <- function(x) {
  d <- density(x)
  d$x[which.max(d$y)]
}

然后得到模态估计:

x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788

还有一个解决方案,适用于数字和字符/因子数据:

Mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}

在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。

如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):

Modes <- function(x) {
  ux <- unique(x)
  tab <- tabulate(match(x, ux))
  ux[tab == max(tab)]
}

R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。

然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19

对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)

参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。

有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)

library(modeest)
mlv(mySamples, method = "mfv")

Mode (most likely value): 19 
Bickel's modal skewness: -0.1 
Call: mlv.default(x = mySamples, method = "mfv")

欲了解更多信息,请参阅本页

你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。

效果很好

> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]