在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
计算模式大多是在有因素变量的情况下才可以使用
labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])
HouseVotes84是在“mlbench”包中可用的数据集。
它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。
其他回答
效果很好
> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]
我还不能投票,但Rasmus Bååth的答案是我一直在寻找的。 但是,我将稍微修改一下,允许将分布限制在0到1之间。
estimate_mode <- function(x,from=min(x), to=max(x)) {
d <- density(x, from=from, to=to)
d$x[which.max(d$y)]
}
我们知道你可能根本不想约束你的分布,那么设置from=-"BIG NUMBER", to="BIG NUMBER"
下面是一个查找模式的函数:
mode <- function(x) {
unique_val <- unique(x)
counts <- vector()
for (i in 1:length(unique_val)) {
counts[i] <- length(which(x==unique_val[i]))
}
position <- c(which(counts==max(counts)))
if (mean(counts)==max(counts))
mode_x <- 'Mode does not exist'
else
mode_x <- unique_val[position]
return(mode_x)
}
这是我的数据。返回完整表的逐行模式的表解决方案。我用它来推断行类。它负责data中新的set()函数。桌子,应该很快。虽然它不管理NA,但可以通过查看本页上的众多其他解决方案添加。
majorityVote <- function(mat_classes) {
#mat_classes = dt.pour.centroids_num
dt.modes <- data.table(mode = integer(nrow(mat_classes)))
for (i in 1:nrow(mat_classes)) {
cur.row <- mat_classes[i]
cur.mode <- which.max(table(t(cur.row)))
set(dt.modes, i=i, j="mode", value = cur.mode)
}
return(dt.modes)
}
可能的用法:
newClass <- majorityVote(my.dt) # just a new vector with all the modes
对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:
Mode <- function(x){
y <- data.frame(table(x))
y[y$Freq == max(y$Freq),1]
}
让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试
> Mode(iris$Sepal.Length)
[1] 5
你可以验证这是正确的。
现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试
> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red
EDIT
正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:
Mode <- function(x){
y <- data.frame(table(x))
z <- y[y$Freq == max(y$Freq),1]
as(as.character(z),class(x))
}
函数的最后一行只是将最终的模式值强制为原始输入的类型。