在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
假设你的观测值是来自实数的类,当你的观测值是2,2,3,3时,你期望模态为2.5,然后你可以用mode = l1 + I * (f1-f0) / (2f1 -f0 - f2)来估计模态,其中l1..最频繁类的下限,f1..最频繁类的频率,f0..在最频繁类之前的类的频率,f2..在最频繁类之后的类的频率,i..分类间隔,如在1,2,3中给出:
#Small Example
x <- c(2,2,3,3) #Observations
i <- 1 #Class interval
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F) #Calculate frequency of classes
mf <- which.max(z$counts) #index of most frequent class
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 2.5
#Larger Example
set.seed(0)
i <- 5 #Class interval
x <- round(rnorm(100,mean=100,sd=10)/i)*i #Observations
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F)
mf <- which.max(z$counts)
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 99.5
如果你想要最频繁的级别,并且你有多个最频繁的级别,你可以得到所有的级别,例如:
x <- c(2,2,3,5,5)
names(which(max(table(x))==table(x)))
#"2" "5"
其他回答
CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:
libary(collapse)
fmode(x, g = NULL, w = NULL, ...)
其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。
这里有另一个解决方案:
freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])
下面的函数有三种形式:
method = "mode"[默认值]:计算单模态向量的模式,否则返回NA Method = "nmodes":计算vector中模式的个数 Method = "modes":列出单模态或多模态向量的所有模态
modeav <- function (x, method = "mode", na.rm = FALSE)
{
x <- unlist(x)
if (na.rm)
x <- x[!is.na(x)]
u <- unique(x)
n <- length(u)
#get frequencies of each of the unique values in the vector
frequencies <- rep(0, n)
for (i in seq_len(n)) {
if (is.na(u[i])) {
frequencies[i] <- sum(is.na(x))
}
else {
frequencies[i] <- sum(x == u[i], na.rm = TRUE)
}
}
#mode if a unimodal vector, else NA
if (method == "mode" | is.na(method) | method == "")
{return(ifelse(length(frequencies[frequencies==max(frequencies)])>1,NA,u[which.max(frequencies)]))}
#number of modes
if(method == "nmode" | method == "nmodes")
{return(length(frequencies[frequencies==max(frequencies)]))}
#list of all modes
if (method == "modes" | method == "modevalues")
{return(u[which(frequencies==max(frequencies), arr.ind = FALSE, useNames = FALSE)])}
#error trap the method
warning("Warning: method not recognised. Valid methods are 'mode' [default], 'nmodes' and 'modes'")
return()
}
对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:
Mode <- function(x){
y <- data.frame(table(x))
y[y$Freq == max(y$Freq),1]
}
让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试
> Mode(iris$Sepal.Length)
[1] 5
你可以验证这是正确的。
现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试
> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red
EDIT
正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:
Mode <- function(x){
y <- data.frame(table(x))
z <- y[y$Freq == max(y$Freq),1]
as(as.character(z),class(x))
}
函数的最后一行只是将最终的模式值强制为原始输入的类型。