在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
为了生成模式,我写了下面的代码。
MODE <- function(dataframe){
DF <- as.data.frame(dataframe)
MODE2 <- function(x){
if (is.numeric(x) == FALSE){
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.character(subset(df, Freq == m)[, 1]))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}else{
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.numeric(as.character(subset(df, Freq == m)[, 1])))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}
}
return(as.vector(lapply(DF, MODE2)))
}
让我们试试吧:
MODE(mtcars)
MODE(CO2)
MODE(ToothGrowth)
MODE(InsectSprays)
其他回答
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。
对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:
Mode <- function(x){
y <- data.frame(table(x))
y[y$Freq == max(y$Freq),1]
}
让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试
> Mode(iris$Sepal.Length)
[1] 5
你可以验证这是正确的。
现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试
> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red
EDIT
正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:
Mode <- function(x){
y <- data.frame(table(x))
z <- y[y$Freq == max(y$Freq),1]
as(as.character(z),class(x))
}
函数的最后一行只是将最终的模式值强制为原始输入的类型。
虽然我喜欢肯威廉姆斯简单的功能,我想检索多种模式,如果他们存在。考虑到这一点,我使用下面的函数,它返回多个模式或单个模式的列表。
rmode <- function(x) {
x <- sort(x)
u <- unique(x)
y <- lapply(u, function(y) length(x[x==y]))
u[which( unlist(y) == max(unlist(y)) )]
}
计算包含离散值的向量“v”的MODE的一个简单方法是:
names(sort(table(v)))[length(sort(table(v)))]