在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
模式并不是在所有情况下都有用。所以函数应该处理这种情况。试试下面的函数。
Mode <- function(v) {
# checking unique numbers in the input
uniqv <- unique(v)
# frquency of most occured value in the input data
m1 <- max(tabulate(match(v, uniqv)))
n <- length(tabulate(match(v, uniqv)))
# if all elements are same
same_val_check <- all(diff(v) == 0)
if(same_val_check == F){
# frquency of second most occured value in the input data
m2 <- sort(tabulate(match(v, uniqv)),partial=n-1)[n-1]
if (m1 != m2) {
# Returning the most repeated value
mode <- uniqv[which.max(tabulate(match(v, uniqv)))]
} else{
mode <- "Two or more values have same frequency. So mode can't be calculated."
}
} else {
# if all elements are same
mode <- unique(v)
}
return(mode)
}
输出,
x1 <- c(1,2,3,3,3,4,5)
Mode(x1)
# [1] 3
x2 <- c(1,2,3,4,5)
Mode(x2)
# [1] "Two or more varibles have same frequency. So mode can't be calculated."
x3 <- c(1,1,2,3,3,4,5)
Mode(x3)
# [1] "Two or more values have same frequency. So mode can't be calculated."
其他回答
还有一个解决方案,适用于数字和字符/因子数据:
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。
如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):
Modes <- function(x) {
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:
estimate_mode <- function(x) {
d <- density(x)
d$x[which.max(d$y)]
}
然后得到模态估计:
x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788
我发现Ken Williams上面的帖子很棒,我添加了几行来解释NA值,并使其成为一个函数。
Mode <- function(x, na.rm = FALSE) {
if(na.rm){
x = x[!is.na(x)]
}
ux <- unique(x)
return(ux[which.max(tabulate(match(x, ux)))])
}
如果你问R中的内置函数,也许你可以在软件包pracma中找到它。在这个包中,有一个叫做Mode的函数。
这是我的数据。返回完整表的逐行模式的表解决方案。我用它来推断行类。它负责data中新的set()函数。桌子,应该很快。虽然它不管理NA,但可以通过查看本页上的众多其他解决方案添加。
majorityVote <- function(mat_classes) {
#mat_classes = dt.pour.centroids_num
dt.modes <- data.table(mode = integer(nrow(mat_classes)))
for (i in 1:nrow(mat_classes)) {
cur.row <- mat_classes[i]
cur.mode <- which.max(table(t(cur.row)))
set(dt.modes, i=i, j="mode", value = cur.mode)
}
return(dt.modes)
}
可能的用法:
newClass <- majorityVote(my.dt) # just a new vector with all the modes