在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
我还不能投票,但Rasmus Bååth的答案是我一直在寻找的。 但是,我将稍微修改一下,允许将分布限制在0到1之间。
estimate_mode <- function(x,from=min(x), to=max(x)) {
d <- density(x, from=from, to=to)
d$x[which.max(d$y)]
}
我们知道你可能根本不想约束你的分布,那么设置from=-"BIG NUMBER", to="BIG NUMBER"
其他回答
还有一个解决方案,适用于数字和字符/因子数据:
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。
如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):
Modes <- function(x) {
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
您还可以计算一个实例在您的集合中出现的次数,并找到最大次数。如。
> temp <- table(as.vector(x))
> names (temp)[temp==max(temp)]
[1] "1"
> as.data.frame(table(x))
r5050 Freq
1 0 13
2 1 15
3 2 6
>
虽然我喜欢肯威廉姆斯简单的功能,我想检索多种模式,如果他们存在。考虑到这一点,我使用下面的函数,它返回多个模式或单个模式的列表。
rmode <- function(x) {
x <- sort(x)
u <- unique(x)
y <- lapply(u, function(y) length(x[x==y]))
u[which( unlist(y) == max(unlist(y)) )]
}
我浏览了所有这些选项,开始想知道它们的相对特性和性能,所以我做了一些测试。如果其他人也好奇,我在这里分享我的结果。
我不想为这里发布的所有函数而烦恼,我选择了一个基于一些标准的示例:函数应该对字符、因子、逻辑和数字向量都有效,它应该适当地处理na和其他有问题的值,输出应该是“合理的”,即没有数字作为字符或其他类似的愚蠢行为。
我还添加了一个我自己的函数,它是基于与chrispy相同的想法,除了适应更一般的用途:
library(magrittr)
Aksel <- function(x, freq=FALSE) {
z <- 2
if (freq) z <- 1:2
run <- x %>% as.vector %>% sort %>% rle %>% unclass %>% data.frame
colnames(run) <- c("freq", "value")
run[which(run$freq==max(run$freq)), z] %>% as.vector
}
set.seed(2)
F <- sample(c("yes", "no", "maybe", NA), 10, replace=TRUE) %>% factor
Aksel(F)
# [1] maybe yes
C <- sample(c("Steve", "Jane", "Jonas", "Petra"), 20, replace=TRUE)
Aksel(C, freq=TRUE)
# freq value
# 7 Steve
最后,我通过微基准测试在两组测试数据上运行了五个函数。函数名指的是它们各自的作者:
Chris的函数被设置为method="modes"和na。rm=TRUE默认值,以使其更具可比性,但除此之外,这里使用的函数是由它们的作者提供的。
In matter of speed alone Kens version wins handily, but it is also the only one of these that will only report one mode, no matter how many there really are. As is often the case, there's a trade-off between speed and versatility. In method="mode", Chris' version will return a value iff there is one mode, else NA. I think that's a nice touch. I also think it's interesting how some of the functions are affected by an increased number of unique values, while others aren't nearly as much. I haven't studied the code in detail to figure out why that is, apart from eliminating logical/numeric as a the cause.
推荐文章
- 使用pandoc从Markdown转换为PDF时设置空白大小
- ggplot2折线图给出“geom_path:每组只包含一个观测值。你需要调整群体审美吗?”
- np.mean() vs np.average()在Python NumPy?
- 导入文本文件为单字符字符串
- 移除jupyter笔记本上的内核
- 提取一个dplyr tbl列作为向量
- 如何在R中绘制两个直方图?
- 显示/打印tibble的所有行(tbl_df)
- 用MySQL计算中位数的简单方法
- 我如何做一个数据帧的列表?
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 模拟ggplot2默认调色板
- R在哪里存储包?
- 标准化R中的数据列
- 在ggplot2中更改轴文本的字体大小和方向