在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
另一个简单的选项是使用rle来给出所有按频率排序的值:
df = as.data.frame(unclass(rle(sort(mySamples))))
df = df[order(-df$lengths),]
head(df)
其他回答
可以尝试以下功能:
将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!
mode <- function(x){
y <- as.factor(x)
freq <- summary(y)
mode <- names(freq)[freq[names(freq)] == max(freq)]
as.numeric(mode)
}
在r邮件列表中发现了这个,希望对你有帮助。我也是这么想的。您将希望table()数据,排序,然后选择第一个名称。这有点粗俗,但应该有用。
names(sort(-table(x)))[1]
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
library(modeest)
mlv(mySamples, method = "mfv")
Mode (most likely value): 19
Bickel's modal skewness: -0.1
Call: mlv.default(x = mySamples, method = "mfv")
欲了解更多信息,请参阅本页
你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。
抱歉,我可能把它理解得太简单了,但这不是可以工作的吗?(我的机器上的1E6值在1.3秒内):
t0 <- Sys.time()
summary(as.factor(round(rnorm(1e6), 2)))[1]
Sys.time()-t0
你只需要用你的向量替换“round(rnorm(1e6),2)”。
推荐文章
- 使用pandoc从Markdown转换为PDF时设置空白大小
- ggplot2折线图给出“geom_path:每组只包含一个观测值。你需要调整群体审美吗?”
- np.mean() vs np.average()在Python NumPy?
- 导入文本文件为单字符字符串
- 移除jupyter笔记本上的内核
- 提取一个dplyr tbl列作为向量
- 如何在R中绘制两个直方图?
- 显示/打印tibble的所有行(tbl_df)
- 用MySQL计算中位数的简单方法
- 我如何做一个数据帧的列表?
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 模拟ggplot2默认调色板
- R在哪里存储包?
- 标准化R中的数据列
- 在ggplot2中更改轴文本的字体大小和方向