在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

这是我的数据。返回完整表的逐行模式的表解决方案。我用它来推断行类。它负责data中新的set()函数。桌子,应该很快。虽然它不管理NA,但可以通过查看本页上的众多其他解决方案添加。

majorityVote <- function(mat_classes) {
  #mat_classes = dt.pour.centroids_num
  dt.modes <- data.table(mode = integer(nrow(mat_classes)))
  for (i in 1:nrow(mat_classes)) {
    cur.row <- mat_classes[i]
    cur.mode <- which.max(table(t(cur.row)))
    set(dt.modes, i=i, j="mode", value = cur.mode)
  }

  return(dt.modes)
}

可能的用法:

newClass <- majorityVote(my.dt)  # just a new vector with all the modes

其他回答

效果很好

> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]

这里有另一个解决方案:

freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])

下面是可以用来找到R中矢量变量的模式的代码。

a <- table([vector])

names(a[a==max(a)])

抱歉,我可能把它理解得太简单了,但这不是可以工作的吗?(我的机器上的1E6值在1.3秒内):

t0 <- Sys.time()
summary(as.factor(round(rnorm(1e6), 2)))[1]
Sys.time()-t0

你只需要用你的向量替换“round(rnorm(1e6),2)”。

这建立在jprockbelly的答案上,通过对非常短的向量增加速度。这在将mode应用到data.frame或包含很多小组的数据表时非常有用:

Mode <- function(x) {
   if ( length(x) <= 2 ) return(x[1])
   if ( anyNA(x) ) x = x[!is.na(x)]
   ux <- unique(x)
   ux[which.max(tabulate(match(x, ux)))]
}