在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
这是我的数据。返回完整表的逐行模式的表解决方案。我用它来推断行类。它负责data中新的set()函数。桌子,应该很快。虽然它不管理NA,但可以通过查看本页上的众多其他解决方案添加。
majorityVote <- function(mat_classes) {
#mat_classes = dt.pour.centroids_num
dt.modes <- data.table(mode = integer(nrow(mat_classes)))
for (i in 1:nrow(mat_classes)) {
cur.row <- mat_classes[i]
cur.mode <- which.max(table(t(cur.row)))
set(dt.modes, i=i, j="mode", value = cur.mode)
}
return(dt.modes)
}
可能的用法:
newClass <- majorityVote(my.dt) # just a new vector with all the modes
其他回答
有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
library(modeest)
mlv(mySamples, method = "mfv")
Mode (most likely value): 19
Bickel's modal skewness: -0.1
Call: mlv.default(x = mySamples, method = "mfv")
欲了解更多信息,请参阅本页
你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。
另一个简单的选项是使用rle来给出所有按频率排序的值:
df = as.data.frame(unclass(rle(sort(mySamples))))
df = df[order(-df$lengths),]
head(df)
对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:
Mode <- function(x){
y <- data.frame(table(x))
y[y$Freq == max(y$Freq),1]
}
让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试
> Mode(iris$Sepal.Length)
[1] 5
你可以验证这是正确的。
现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试
> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red
EDIT
正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:
Mode <- function(x){
y <- data.frame(table(x))
z <- y[y$Freq == max(y$Freq),1]
as(as.character(z),class(x))
}
函数的最后一行只是将最终的模式值强制为原始输入的类型。
计算包含离散值的向量“v”的MODE的一个简单方法是:
names(sort(table(v)))[length(sort(table(v)))]
我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:
function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]
其中x是数据集合。注意调节平滑的密度函数的调节参数。
推荐文章
- 在geom_point中标记点
- 从线性回归中提取p值和r平方
- 在数据帧的组中为行编号
- 在scikit-learn线性回归中找到p值(显著性)
- 在R编程语言中~(波浪号)的使用
- R -降价避免包装加载消息
- 只从数据帧中选择数字列
- 为什么使用purrr::map而不是lapply?
- 如何在data.table中按名称删除列?
- 将data.frame从宽格式调整为长格式
- 计算移动平均线
- 在R中同一行打印字符串和变量内容
- 使用pandoc从Markdown转换为PDF时设置空白大小
- ggplot2折线图给出“geom_path:每组只包含一个观测值。你需要调整群体审美吗?”
- np.mean() vs np.average()在Python NumPy?