在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:
function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]
其中x是数据集合。注意调节平滑的密度函数的调节参数。
其他回答
这建立在jprockbelly的答案上,通过对非常短的向量增加速度。这在将mode应用到data.frame或包含很多小组的数据表时非常有用:
Mode <- function(x) {
if ( length(x) <= 2 ) return(x[1])
if ( anyNA(x) ) x = x[!is.na(x)]
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
您还可以计算一个实例在您的集合中出现的次数,并找到最大次数。如。
> temp <- table(as.vector(x))
> names (temp)[temp==max(temp)]
[1] "1"
> as.data.frame(table(x))
r5050 Freq
1 0 13
2 1 15
3 2 6
>
计算模式大多是在有因素变量的情况下才可以使用
labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])
HouseVotes84是在“mlbench”包中可用的数据集。
它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。
可以尝试以下功能:
将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!
mode <- function(x){
y <- as.factor(x)
freq <- summary(y)
mode <- names(freq)[freq[names(freq)] == max(freq)]
as.numeric(mode)
}
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
推荐文章
- 在geom_point中标记点
- 从线性回归中提取p值和r平方
- 在数据帧的组中为行编号
- 在scikit-learn线性回归中找到p值(显著性)
- 在R编程语言中~(波浪号)的使用
- R -降价避免包装加载消息
- 只从数据帧中选择数字列
- 为什么使用purrr::map而不是lapply?
- 如何在data.table中按名称删除列?
- 将data.frame从宽格式调整为长格式
- 计算移动平均线
- 在R中同一行打印字符串和变量内容
- 使用pandoc从Markdown转换为PDF时设置空白大小
- ggplot2折线图给出“geom_path:每组只包含一个观测值。你需要调整群体审美吗?”
- np.mean() vs np.average()在Python NumPy?