在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

另一个可能的解决方案:

Mode <- function(x) {
    if (is.numeric(x)) {
        x_table <- table(x)
        return(as.numeric(names(x_table)[which.max(x_table)]))
    }
}

用法:

set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))

输出:

   user  system elapsed 
   0.32    0.00    0.31 

其他回答

计算包含离散值的向量“v”的MODE的一个简单方法是:

names(sort(table(v)))[length(sort(table(v)))]

另一个简单的选项是使用rle来给出所有按频率排序的值:

df = as.data.frame(unclass(rle(sort(mySamples))))
df = df[order(-df$lengths),]
head(df)

有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)

library(modeest)
mlv(mySamples, method = "mfv")

Mode (most likely value): 19 
Bickel's modal skewness: -0.1 
Call: mlv.default(x = mySamples, method = "mfv")

欲了解更多信息,请参阅本页

你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。

我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:

function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]

其中x是数据集合。注意调节平滑的密度函数的调节参数。

如果你问R中的内置函数,也许你可以在软件包pracma中找到它。在这个包中,有一个叫做Mode的函数。