在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
另一个可能的解决方案:
Mode <- function(x) {
if (is.numeric(x)) {
x_table <- table(x)
return(as.numeric(names(x_table)[which.max(x_table)]))
}
}
用法:
set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))
输出:
user system elapsed
0.32 0.00 0.31
其他回答
另一个可能的解决方案:
Mode <- function(x) {
if (is.numeric(x)) {
x_table <- table(x)
return(as.numeric(names(x_table)[which.max(x_table)]))
}
}
用法:
set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))
输出:
user system elapsed
0.32 0.00 0.31
模式并不是在所有情况下都有用。所以函数应该处理这种情况。试试下面的函数。
Mode <- function(v) {
# checking unique numbers in the input
uniqv <- unique(v)
# frquency of most occured value in the input data
m1 <- max(tabulate(match(v, uniqv)))
n <- length(tabulate(match(v, uniqv)))
# if all elements are same
same_val_check <- all(diff(v) == 0)
if(same_val_check == F){
# frquency of second most occured value in the input data
m2 <- sort(tabulate(match(v, uniqv)),partial=n-1)[n-1]
if (m1 != m2) {
# Returning the most repeated value
mode <- uniqv[which.max(tabulate(match(v, uniqv)))]
} else{
mode <- "Two or more values have same frequency. So mode can't be calculated."
}
} else {
# if all elements are same
mode <- unique(v)
}
return(mode)
}
输出,
x1 <- c(1,2,3,3,3,4,5)
Mode(x1)
# [1] 3
x2 <- c(1,2,3,4,5)
Mode(x2)
# [1] "Two or more varibles have same frequency. So mode can't be calculated."
x3 <- c(1,1,2,3,3,4,5)
Mode(x3)
# [1] "Two or more values have same frequency. So mode can't be calculated."
估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:
estimate_mode <- function(x) {
d <- density(x)
d$x[which.max(d$y)]
}
然后得到模态估计:
x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788
虽然我喜欢肯威廉姆斯简单的功能,我想检索多种模式,如果他们存在。考虑到这一点,我使用下面的函数,它返回多个模式或单个模式的列表。
rmode <- function(x) {
x <- sort(x)
u <- unique(x)
y <- lapply(u, function(y) length(x[x==y]))
u[which( unlist(y) == max(unlist(y)) )]
}
为了生成模式,我写了下面的代码。
MODE <- function(dataframe){
DF <- as.data.frame(dataframe)
MODE2 <- function(x){
if (is.numeric(x) == FALSE){
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.character(subset(df, Freq == m)[, 1]))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}else{
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.numeric(as.character(subset(df, Freq == m)[, 1])))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}
}
return(as.vector(lapply(DF, MODE2)))
}
让我们试试吧:
MODE(mtcars)
MODE(CO2)
MODE(ToothGrowth)
MODE(InsectSprays)