在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

可以尝试以下功能:

将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!

mode <- function(x){
  y <- as.factor(x)
  freq <- summary(y)
  mode <- names(freq)[freq[names(freq)] == max(freq)]
  as.numeric(mode)
}

其他回答

有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)

library(modeest)
mlv(mySamples, method = "mfv")

Mode (most likely value): 19 
Bickel's modal skewness: -0.1 
Call: mlv.default(x = mySamples, method = "mfv")

欲了解更多信息,请参阅本页

你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。

估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:

estimate_mode <- function(x) {
  d <- density(x)
  d$x[which.max(d$y)]
}

然后得到模态估计:

x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788

抱歉,我可能把它理解得太简单了,但这不是可以工作的吗?(我的机器上的1E6值在1.3秒内):

t0 <- Sys.time()
summary(as.factor(round(rnorm(1e6), 2)))[1]
Sys.time()-t0

你只需要用你的向量替换“round(rnorm(1e6),2)”。

对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:

Mode <- function(x){
  y <- data.frame(table(x))
  y[y$Freq == max(y$Freq),1]
}

让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试

> Mode(iris$Sepal.Length)
[1] 5

你可以验证这是正确的。

现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试

> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red

EDIT

正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:

Mode <- function(x){
  y <- data.frame(table(x))
  z <- y[y$Freq == max(y$Freq),1]
  as(as.character(z),class(x))
}

函数的最后一行只是将最终的模式值强制为原始输入的类型。

我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:

function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]

其中x是数据集合。注意调节平滑的密度函数的调节参数。