在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

可以尝试以下功能:

将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!

mode <- function(x){
  y <- as.factor(x)
  freq <- summary(y)
  mode <- names(freq)[freq[names(freq)] == max(freq)]
  as.numeric(mode)
}

其他回答

基于@Chris的函数来计算模态或相关指标,但是使用Ken Williams的方法来计算频率。这个方法修复了根本没有模式(所有元素频率相等)的情况,并提供了一些更易读的方法名。

Mode <- function(x, method = "one", na.rm = FALSE) {
  x <- unlist(x)
  if (na.rm) {
    x <- x[!is.na(x)]
  }

  # Get unique values
  ux <- unique(x)
  n <- length(ux)

  # Get frequencies of all unique values
  frequencies <- tabulate(match(x, ux))
  modes <- frequencies == max(frequencies)

  # Determine number of modes
  nmodes <- sum(modes)
  nmodes <- ifelse(nmodes==n, 0L, nmodes)

  if (method %in% c("one", "mode", "") | is.na(method)) {
    # Return NA if not exactly one mode, else return the mode
    if (nmodes != 1) {
      return(NA)
    } else {
      return(ux[which(modes)])
    }
  } else if (method %in% c("n", "nmodes")) {
    # Return the number of modes
    return(nmodes)
  } else if (method %in% c("all", "modes")) {
    # Return NA if no modes exist, else return all modes
    if (nmodes > 0) {
      return(ux[which(modes)])
    } else {
      return(NA)
    }
  }
  warning("Warning: method not recognised.  Valid methods are 'one'/'mode' [default], 'n'/'nmodes' and 'all'/'modes'")
}

由于它使用Ken的方法来计算频率,性能也得到了优化,使用AkselA的帖子,我对之前的一些答案进行了基准测试,以显示我的函数在性能上是如何接近Ken的,各种输出选项的条件只导致很小的开销:

还有一个解决方案,适用于数字和字符/因子数据:

Mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}

在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。

如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):

Modes <- function(x) {
  ux <- unique(x)
  tab <- tabulate(match(x, ux))
  ux[tab == max(tab)]
}

如果你问R中的内置函数,也许你可以在软件包pracma中找到它。在这个包中,有一个叫做Mode的函数。

模式并不是在所有情况下都有用。所以函数应该处理这种情况。试试下面的函数。

Mode <- function(v) {
  # checking unique numbers in the input
  uniqv <- unique(v)
  # frquency of most occured value in the input data
  m1 <- max(tabulate(match(v, uniqv)))
  n <- length(tabulate(match(v, uniqv)))
  # if all elements are same
  same_val_check <- all(diff(v) == 0)
  if(same_val_check == F){
    # frquency of second most occured value in the input data
    m2 <- sort(tabulate(match(v, uniqv)),partial=n-1)[n-1]
    if (m1 != m2) {
      # Returning the most repeated value
      mode <- uniqv[which.max(tabulate(match(v, uniqv)))]
    } else{
      mode <- "Two or more values have same frequency. So mode can't be calculated."
    }
  } else {
    # if all elements are same
    mode <- unique(v)
  }
  return(mode)
}

输出,

x1 <- c(1,2,3,3,3,4,5)
Mode(x1)
# [1] 3

x2 <- c(1,2,3,4,5)
Mode(x2)
# [1] "Two or more varibles have same frequency. So mode can't be calculated."

x3 <- c(1,1,2,3,3,4,5)
Mode(x3)
# [1] "Two or more values have same frequency. So mode can't be calculated."

计算模式大多是在有因素变量的情况下才可以使用

labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])

HouseVotes84是在“mlbench”包中可用的数据集。

它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。