在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:

Mode <- function(x){
  y <- data.frame(table(x))
  y[y$Freq == max(y$Freq),1]
}

让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试

> Mode(iris$Sepal.Length)
[1] 5

你可以验证这是正确的。

现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试

> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red

EDIT

正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:

Mode <- function(x){
  y <- data.frame(table(x))
  z <- y[y$Freq == max(y$Freq),1]
  as(as.character(z),class(x))
}

函数的最后一行只是将最终的模式值强制为原始输入的类型。

其他回答

您还可以计算一个实例在您的集合中出现的次数,并找到最大次数。如。

> temp <- table(as.vector(x))
> names (temp)[temp==max(temp)]
[1] "1"
> as.data.frame(table(x))
r5050 Freq
1     0   13
2     1   15
3     2    6
> 

另一个简单的选项是使用rle来给出所有按频率排序的值:

df = as.data.frame(unclass(rle(sort(mySamples))))
df = df[order(-df$lengths),]
head(df)

有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)

library(modeest)
mlv(mySamples, method = "mfv")

Mode (most likely value): 19 
Bickel's modal skewness: -0.1 
Call: mlv.default(x = mySamples, method = "mfv")

欲了解更多信息,请参阅本页

你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。

下面是一个查找模式的函数:

mode <- function(x) {
  unique_val <- unique(x)
  counts <- vector()
  for (i in 1:length(unique_val)) {
    counts[i] <- length(which(x==unique_val[i]))
  }
  position <- c(which(counts==max(counts)))
  if (mean(counts)==max(counts)) 
    mode_x <- 'Mode does not exist'
  else 
    mode_x <- unique_val[position]
  return(mode_x)
}

效果很好

> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]