在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:

Mode <- function(x){
  y <- data.frame(table(x))
  y[y$Freq == max(y$Freq),1]
}

让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试

> Mode(iris$Sepal.Length)
[1] 5

你可以验证这是正确的。

现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试

> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red

EDIT

正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:

Mode <- function(x){
  y <- data.frame(table(x))
  z <- y[y$Freq == max(y$Freq),1]
  as(as.character(z),class(x))
}

函数的最后一行只是将最终的模式值强制为原始输入的类型。

其他回答

CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:

libary(collapse)
fmode(x, g = NULL, w = NULL, ...)

其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。

虽然我喜欢肯威廉姆斯简单的功能,我想检索多种模式,如果他们存在。考虑到这一点,我使用下面的函数,它返回多个模式或单个模式的列表。

rmode <- function(x) {
  x <- sort(x)  
  u <- unique(x)
  y <- lapply(u, function(y) length(x[x==y]))
  u[which( unlist(y) == max(unlist(y)) )]
} 

模式并不是在所有情况下都有用。所以函数应该处理这种情况。试试下面的函数。

Mode <- function(v) {
  # checking unique numbers in the input
  uniqv <- unique(v)
  # frquency of most occured value in the input data
  m1 <- max(tabulate(match(v, uniqv)))
  n <- length(tabulate(match(v, uniqv)))
  # if all elements are same
  same_val_check <- all(diff(v) == 0)
  if(same_val_check == F){
    # frquency of second most occured value in the input data
    m2 <- sort(tabulate(match(v, uniqv)),partial=n-1)[n-1]
    if (m1 != m2) {
      # Returning the most repeated value
      mode <- uniqv[which.max(tabulate(match(v, uniqv)))]
    } else{
      mode <- "Two or more values have same frequency. So mode can't be calculated."
    }
  } else {
    # if all elements are same
    mode <- unique(v)
  }
  return(mode)
}

输出,

x1 <- c(1,2,3,3,3,4,5)
Mode(x1)
# [1] 3

x2 <- c(1,2,3,4,5)
Mode(x2)
# [1] "Two or more varibles have same frequency. So mode can't be calculated."

x3 <- c(1,1,2,3,3,4,5)
Mode(x3)
# [1] "Two or more values have same frequency. So mode can't be calculated."

为了生成模式,我写了下面的代码。

MODE <- function(dataframe){
    DF <- as.data.frame(dataframe)

    MODE2 <- function(x){      
        if (is.numeric(x) == FALSE){
            df <- as.data.frame(table(x))  
            df <- df[order(df$Freq), ]         
            m <- max(df$Freq)        
            MODE1 <- as.vector(as.character(subset(df, Freq == m)[, 1]))

            if (sum(df$Freq)/length(df$Freq)==1){
                warning("No Mode: Frequency of all values is 1", call. = FALSE)
            }else{
                return(MODE1)
            }

        }else{ 
            df <- as.data.frame(table(x))  
            df <- df[order(df$Freq), ]         
            m <- max(df$Freq)        
            MODE1 <- as.vector(as.numeric(as.character(subset(df, Freq == m)[, 1])))

            if (sum(df$Freq)/length(df$Freq)==1){
                warning("No Mode: Frequency of all values is 1", call. = FALSE)
            }else{
                return(MODE1)
            }
        }
    }

    return(as.vector(lapply(DF, MODE2)))
}

让我们试试吧:

MODE(mtcars)
MODE(CO2)
MODE(ToothGrowth)
MODE(InsectSprays)

估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:

estimate_mode <- function(x) {
  d <- density(x)
  d$x[which.max(d$y)]
}

然后得到模态估计:

x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788