在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
在我看来,如果一个集合有一个模式,那么它的元素就可以与自然数一一对应。因此,查找模式的问题简化为生成这样一个映射,查找映射值的模式,然后映射回集合中的一些项。(处理NA发生在映射阶段)。
我有一个直方图函数,它的原理类似。(本文代码中使用的特殊函数和操作符应在Shapiro和/或neatOveRse中定义。在此复制夏皮罗和奈尔斯的部分是经过允许的;复制的片段可根据本网站的条款使用。)直方图的伪代码是
.histogram <- function (i)
if (i %|% is.empty) integer() else
vapply2(i %|% max %|% seqN, `==` %<=% i %O% sum)
histogram <- function(i) i %|% rmna %|% .histogram
(特殊的二进制操作符完成管道、咖喱和组合)我还有一个maxloc函数,它与which类似。Max,但返回一个向量的所有绝对最大值。maxloc的R伪代码是
FUNloc <- function (FUN, x, na.rm=F)
which(x == list(identity, rmna)[[na.rm %|% index.b]](x) %|% FUN)
maxloc <- FUNloc %<=% max
minloc <- FUNloc %<=% min # I'M THROWING IN minloc TO EXPLAIN WHY I MADE FUNloc
Then
imode <- histogram %O% maxloc
and
x %|% map %|% imode %|% unmap
将计算任何集合的模式,只要定义了适当的映射-ping和取消映射-ping函数。
其他回答
估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:
estimate_mode <- function(x) {
d <- density(x)
d$x[which.max(d$y)]
}
然后得到模态估计:
x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788
这建立在jprockbelly的答案上,通过对非常短的向量增加速度。这在将mode应用到data.frame或包含很多小组的数据表时非常有用:
Mode <- function(x) {
if ( length(x) <= 2 ) return(x[1])
if ( anyNA(x) ) x = x[!is.na(x)]
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
如果你问R中的内置函数,也许你可以在软件包pracma中找到它。在这个包中,有一个叫做Mode的函数。
在我看来,如果一个集合有一个模式,那么它的元素就可以与自然数一一对应。因此,查找模式的问题简化为生成这样一个映射,查找映射值的模式,然后映射回集合中的一些项。(处理NA发生在映射阶段)。
我有一个直方图函数,它的原理类似。(本文代码中使用的特殊函数和操作符应在Shapiro和/或neatOveRse中定义。在此复制夏皮罗和奈尔斯的部分是经过允许的;复制的片段可根据本网站的条款使用。)直方图的伪代码是
.histogram <- function (i)
if (i %|% is.empty) integer() else
vapply2(i %|% max %|% seqN, `==` %<=% i %O% sum)
histogram <- function(i) i %|% rmna %|% .histogram
(特殊的二进制操作符完成管道、咖喱和组合)我还有一个maxloc函数,它与which类似。Max,但返回一个向量的所有绝对最大值。maxloc的R伪代码是
FUNloc <- function (FUN, x, na.rm=F)
which(x == list(identity, rmna)[[na.rm %|% index.b]](x) %|% FUN)
maxloc <- FUNloc %<=% max
minloc <- FUNloc %<=% min # I'M THROWING IN minloc TO EXPLAIN WHY I MADE FUNloc
Then
imode <- histogram %O% maxloc
and
x %|% map %|% imode %|% unmap
将计算任何集合的模式,只要定义了适当的映射-ping和取消映射-ping函数。
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。