在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

这建立在jprockbelly的答案上,通过对非常短的向量增加速度。这在将mode应用到data.frame或包含很多小组的数据表时非常有用:

Mode <- function(x) {
   if ( length(x) <= 2 ) return(x[1])
   if ( anyNA(x) ) x = x[!is.na(x)]
   ux <- unique(x)
   ux[which.max(tabulate(match(x, ux)))]
}

其他回答

这建立在jprockbelly的答案上,通过对非常短的向量增加速度。这在将mode应用到data.frame或包含很多小组的数据表时非常有用:

Mode <- function(x) {
   if ( length(x) <= 2 ) return(x[1])
   if ( anyNA(x) ) x = x[!is.na(x)]
   ux <- unique(x)
   ux[which.max(tabulate(match(x, ux)))]
}

R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。

然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19

对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)

参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。

可以尝试以下功能:

将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!

mode <- function(x){
  y <- as.factor(x)
  freq <- summary(y)
  mode <- names(freq)[freq[names(freq)] == max(freq)]
  as.numeric(mode)
}

我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:

function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]

其中x是数据集合。注意调节平滑的密度函数的调节参数。

这里有另一个解决方案:

freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])