在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
计算包含离散值的向量“v”的MODE的一个简单方法是:
names(sort(table(v)))[length(sort(table(v)))]
其他回答
这里有另一个解决方案:
freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])
有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
library(modeest)
mlv(mySamples, method = "mfv")
Mode (most likely value): 19
Bickel's modal skewness: -0.1
Call: mlv.default(x = mySamples, method = "mfv")
欲了解更多信息,请参阅本页
你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。
计算模式大多是在有因素变量的情况下才可以使用
labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])
HouseVotes84是在“mlbench”包中可用的数据集。
它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。
添加raster::modal()作为一个选项,不过请注意,raster是一个很大的包,如果不做地理空间方面的工作,可能不值得安装。
源代码可以从https://github.com/rspatial/raster/blob/master/src/modal.cpp和https://github.com/rspatial/raster/blob/master/R/modal.R中取出,放入个人R包中,供那些特别热衷的人使用。
CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:
libary(collapse)
fmode(x, g = NULL, w = NULL, ...)
其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。