在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
计算包含离散值的向量“v”的MODE的一个简单方法是:
names(sort(table(v)))[length(sort(table(v)))]
其他回答
为了生成模式,我写了下面的代码。
MODE <- function(dataframe){
DF <- as.data.frame(dataframe)
MODE2 <- function(x){
if (is.numeric(x) == FALSE){
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.character(subset(df, Freq == m)[, 1]))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}else{
df <- as.data.frame(table(x))
df <- df[order(df$Freq), ]
m <- max(df$Freq)
MODE1 <- as.vector(as.numeric(as.character(subset(df, Freq == m)[, 1])))
if (sum(df$Freq)/length(df$Freq)==1){
warning("No Mode: Frequency of all values is 1", call. = FALSE)
}else{
return(MODE1)
}
}
}
return(as.vector(lapply(DF, MODE2)))
}
让我们试试吧:
MODE(mtcars)
MODE(CO2)
MODE(ToothGrowth)
MODE(InsectSprays)
CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:
libary(collapse)
fmode(x, g = NULL, w = NULL, ...)
其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。
另一个可能的解决方案:
Mode <- function(x) {
if (is.numeric(x)) {
x_table <- table(x)
return(as.numeric(names(x_table)[which.max(x_table)]))
}
}
用法:
set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))
输出:
user system elapsed
0.32 0.00 0.31
这里有另一个解决方案:
freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])
假设你的观测值是来自实数的类,当你的观测值是2,2,3,3时,你期望模态为2.5,然后你可以用mode = l1 + I * (f1-f0) / (2f1 -f0 - f2)来估计模态,其中l1..最频繁类的下限,f1..最频繁类的频率,f0..在最频繁类之前的类的频率,f2..在最频繁类之后的类的频率,i..分类间隔,如在1,2,3中给出:
#Small Example
x <- c(2,2,3,3) #Observations
i <- 1 #Class interval
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F) #Calculate frequency of classes
mf <- which.max(z$counts) #index of most frequent class
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 2.5
#Larger Example
set.seed(0)
i <- 5 #Class interval
x <- round(rnorm(100,mean=100,sd=10)/i)*i #Observations
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F)
mf <- which.max(z$counts)
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 99.5
如果你想要最频繁的级别,并且你有多个最频繁的级别,你可以得到所有的级别,例如:
x <- c(2,2,3,5,5)
names(which(max(table(x))==table(x)))
#"2" "5"