更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

下面是在Golang中实现的Smoothed z-score算法(上图)。它假设一个[]int16 (PCM 16bit样本)的切片。你可以在这里找到要点。

/*
Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half
*/

// ZScore on 16bit WAV samples
func ZScore(samples []int16, lag int, threshold float64, influence float64) (signals []int16) {
    //lag := 20
    //threshold := 3.5
    //influence := 0.5

    signals = make([]int16, len(samples))
    filteredY := make([]int16, len(samples))
    for i, sample := range samples[0:lag] {
        filteredY[i] = sample
    }
    avgFilter := make([]int16, len(samples))
    stdFilter := make([]int16, len(samples))

    avgFilter[lag] = Average(samples[0:lag])
    stdFilter[lag] = Std(samples[0:lag])

    for i := lag + 1; i < len(samples); i++ {

        f := float64(samples[i])

        if float64(Abs(samples[i]-avgFilter[i-1])) > threshold*float64(stdFilter[i-1]) {
            if samples[i] > avgFilter[i-1] {
                signals[i] = 1
            } else {
                signals[i] = -1
            }
            filteredY[i] = int16(influence*f + (1-influence)*float64(filteredY[i-1]))
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        } else {
            signals[i] = 0
            filteredY[i] = samples[i]
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        }
    }

    return
}

// Average a chunk of values
func Average(chunk []int16) (avg int16) {
    var sum int64
    for _, sample := range chunk {
        if sample < 0 {
            sample *= -1
        }
        sum += int64(sample)
    }
    return int16(sum / int64(len(chunk)))
}

其他回答

@Jean-Paul算法的Perl实现。

#!/usr/bin/perl

use strict;
use Data::Dumper;

sub mean {
    my $data = shift;
    my $sum = 0;
    my $mean_val = 0;
    for my $item (@$data) {
        $sum += $item;
    }
    $mean_val = $sum / (scalar @$data) if @$data;
    return $mean_val;
}

sub variance {
    my $data = shift;
    my $variance_val = 0;
    my $mean_val = mean($data);
    my $sum = 0;
    for my $item (@$data) {
        $sum += ($item - $mean_val)**2;
    }
    $variance_val = $sum / (scalar @$data) if @$data;
    return $variance_val;
}

sub std {
    my $data = shift;
    my $variance_val = variance($data);
    return sqrt($variance_val);
}

# @param y - The input vector to analyze
# @parameter lag - The lag of the moving window
# @parameter threshold - The z-score at which the algorithm signals
# @parameter influence - The influence (between 0 and 1) of new signals on the mean and standard deviation
sub thresholding_algo {
    my ($y, $lag, $threshold, $influence) = @_;

    my @signals = (0) x @$y;
    my @filteredY = @$y;
    my @avgFilter = (0) x @$y;
    my @stdFilter = (0) x @$y;

    $avgFilter[$lag - 1] = mean([@$y[0..$lag-1]]);
    $stdFilter[$lag - 1] = std([@$y[0..$lag-1]]);

    for (my $i=$lag; $i <= @$y - 1; $i++) {
        if (abs($y->[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$i-1]) {
            if ($y->[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            } else {
                $signals[$i] = -1;
            }

            $filteredY[$i] = $influence * $y->[$i] + (1 - $influence) * $filteredY[$i-1];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $y->[$i];
            $avgFilter[$i] = mean([@filteredY[($i-$lag)..($i-1)]]);
            $stdFilter[$i] = std([@filteredY[($i-$lag)..($i-1)]]);
        }
    }

    return {
        signals => \@signals,
        avgFilter => \@avgFilter,
        stdFilter => \@stdFilter
    };
}

my $y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1];

my $lag = 30;
my $threshold = 5;
my $influence = 0;

my $result = thresholding_algo($y, $lag, $threshold, $influence);

print Dumper $result;

函数scipy.signal。Find_peaks,顾名思义,在这方面很有用。但是要得到好的峰值提取,必须了解其参数宽度、阈值、距离和突出度。

根据我的测试和文档,突出的概念是“有用的概念”,可以保留好的峰值,丢弃噪声峰值。

什么是(地形)突出?它是“从山顶下降到任何更高地形所需的最低高度”,如下图所示:

这个想法是:

突出位置越高,山峰就越“重要”。

我想把我的Julia算法实现提供给其他人。要点可以在这里找到

using Statistics
using Plots
function SmoothedZscoreAlgo(y, lag, threshold, influence)
    # Julia implimentation of http://stackoverflow.com/a/22640362/6029703
    n = length(y)
    signals = zeros(n) # init signal results
    filteredY = copy(y) # init filtered series
    avgFilter = zeros(n) # init average filter
    stdFilter = zeros(n) # init std filter
    avgFilter[lag - 1] = mean(y[1:lag]) # init first value
    stdFilter[lag - 1] = std(y[1:lag]) # init first value

    for i in range(lag, stop=n-1)
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1]
            if y[i] > avgFilter[i-1]
                signals[i] += 1 # postive signal
            else
                signals[i] += -1 # negative signal
            end
            # Make influence lower
            filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
        else
            signals[i] = 0
            filteredY[i] = y[i]
        end
        avgFilter[i] = mean(filteredY[i-lag+1:i])
        stdFilter[i] = std(filteredY[i-lag+1:i])
    end
    return (signals = signals, avgFilter = avgFilter, stdFilter = stdFilter)
end


# Data
y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

results = SmoothedZscoreAlgo(y, lag, threshold, influence)
upper_bound = results[:avgFilter] + threshold * results[:stdFilter]
lower_bound = results[:avgFilter] - threshold * results[:stdFilter]
x = 1:length(y)

yplot = plot(x,y,color="blue", label="Y",legend=:topleft)
yplot = plot!(x,upper_bound, color="green", label="Upper Bound",legend=:topleft)
yplot = plot!(x,results[:avgFilter], color="cyan", label="Average Filter",legend=:topleft)
yplot = plot!(x,lower_bound, color="green", label="Lower Bound",legend=:topleft)
signalplot = plot(x,results[:signals],color="red",label="Signals",legend=:topleft)
plot(yplot,signalplot,layout=(2,1),legend=:topleft)

下面是平滑z-score算法的Python / numpy实现(见上面的答案)。你可以在这里找到要点。

#!/usr/bin/env python
# Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
    signals = np.zeros(len(y))
    filteredY = np.array(y)
    avgFilter = [0]*len(y)
    stdFilter = [0]*len(y)
    avgFilter[lag - 1] = np.mean(y[0:lag])
    stdFilter[lag - 1] = np.std(y[0:lag])
    for i in range(lag, len(y)):
        if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
            if y[i] > avgFilter[i-1]:
                signals[i] = 1
            else:
                signals[i] = -1

            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])
        else:
            signals[i] = 0
            filteredY[i] = y[i]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])

    return dict(signals = np.asarray(signals),
                avgFilter = np.asarray(avgFilter),
                stdFilter = np.asarray(stdFilter))

下面是在同一个数据集上的测试,它产生的图与R/Matlab的原始答案相同

# Data
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

# Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y)+1), y)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"], color="cyan", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2)

pylab.subplot(212)
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

我们尝试在我们的数据集上使用平滑的z-score算法,这导致了过度敏感或不敏感(取决于参数如何调整),几乎没有中间地带。在我们站点的交通信号中,我们观察到一个低频基线,它代表了每天的周期,即使有最好的可能参数(如下所示),它仍然在第4天下降,特别是因为大多数数据点被认为是异常的。

在原始z-score算法的基础上,我们提出了一种通过反向滤波来解决这个问题的方法。改进后的算法及其在电视商业流量归因中的应用详见我们的团队博客。