更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

下面是在Golang中实现的Smoothed z-score算法(上图)。它假设一个[]int16 (PCM 16bit样本)的切片。你可以在这里找到要点。

/*
Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half
*/

// ZScore on 16bit WAV samples
func ZScore(samples []int16, lag int, threshold float64, influence float64) (signals []int16) {
    //lag := 20
    //threshold := 3.5
    //influence := 0.5

    signals = make([]int16, len(samples))
    filteredY := make([]int16, len(samples))
    for i, sample := range samples[0:lag] {
        filteredY[i] = sample
    }
    avgFilter := make([]int16, len(samples))
    stdFilter := make([]int16, len(samples))

    avgFilter[lag] = Average(samples[0:lag])
    stdFilter[lag] = Std(samples[0:lag])

    for i := lag + 1; i < len(samples); i++ {

        f := float64(samples[i])

        if float64(Abs(samples[i]-avgFilter[i-1])) > threshold*float64(stdFilter[i-1]) {
            if samples[i] > avgFilter[i-1] {
                signals[i] = 1
            } else {
                signals[i] = -1
            }
            filteredY[i] = int16(influence*f + (1-influence)*float64(filteredY[i-1]))
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        } else {
            signals[i] = 0
            filteredY[i] = samples[i]
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        }
    }

    return
}

// Average a chunk of values
func Average(chunk []int16) (avg int16) {
    var sum int64
    for _, sample := range chunk {
        if sample < 0 {
            sample *= -1
        }
        sum += int64(sample)
    }
    return int16(sum / int64(len(chunk)))
}

其他回答

这是一个Python实现的鲁棒峰值检测算法算法。

初始化和计算部分被分开,只有filtered_y数组被保留,它的最大大小等于延迟,因此内存没有增加。(结果与上述答案相同)。 为了绘制图形,还保留了标签数组。

我做了一个github要点。

import numpy as np
import pylab

def init(x, lag, threshold, influence):
    '''
    Smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''

    labels = np.zeros(lag)
    filtered_y = np.array(x[0:lag])
    avg_filter = np.zeros(lag)
    std_filter = np.zeros(lag)
    var_filter = np.zeros(lag)

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])

    return dict(avg=avg_filter[lag - 1], var=var_filter[lag - 1],
                std=std_filter[lag - 1], filtered_y=filtered_y,
                labels=labels)


def add(result, single_value, lag, threshold, influence):
    previous_avg = result['avg']
    previous_var = result['var']
    previous_std = result['std']
    filtered_y = result['filtered_y']
    labels = result['labels']

    if abs(single_value - previous_avg) > threshold * previous_std:
        if single_value > previous_avg:
            labels = np.append(labels, 1)
        else:
            labels = np.append(labels, -1)

        # calculate the new filtered element using the influence factor
        filtered_y = np.append(filtered_y, influence * single_value
                               + (1 - influence) * filtered_y[-1])
    else:
        labels = np.append(labels, 0)
        filtered_y = np.append(filtered_y, single_value)

    # update avg as sum of the previuos avg + the lag * (the new calculated item - calculated item at position (i - lag))
    current_avg_filter = previous_avg + 1. / lag * (filtered_y[-1]
            - filtered_y[len(filtered_y) - lag - 1])

    # update variance as the previuos element variance + 1 / lag * new recalculated item - the previous avg -
    current_var_filter = previous_var + 1. / lag * ((filtered_y[-1]
            - previous_avg) ** 2 - (filtered_y[len(filtered_y) - 1
            - lag] - previous_avg) ** 2 - (filtered_y[-1]
            - filtered_y[len(filtered_y) - 1 - lag]) ** 2 / lag)  # the recalculated element at pos (lag) - avg of the previuos - new recalculated element - recalculated element at lag pos ....

    # calculate standard deviation for current element as sqrt (current variance)
    current_std_filter = np.sqrt(current_var_filter)

    return dict(avg=current_avg_filter, var=current_var_filter,
                std=current_std_filter, filtered_y=filtered_y[1:],
                labels=labels)

lag = 30
threshold = 5
influence = 0

y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Run algo with settings from above
result = init(y[:lag], lag=lag, threshold=threshold, influence=influence)

i = open('quartz2', 'r')
for i in y[lag:]:
    result = add(result, i, lag, threshold, influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y) + 1), y)
pylab.subplot(212)
pylab.step(np.arange(1, len(y) + 1), result['labels'], color='red',
           lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

c++ (Qt)演示端口,交互式参数

我已经将这个算法的演示应用程序移植到c++ (Qt)上。

代码可以在GitHub上找到这里。带有安装程序的Windows(64位)构建在发布页面上。最后,我将添加一些文档和其他发布版本。

您不能绘制点,但可以从文本文件中导入它们(用空格分隔点——换行也算作空格)。您还可以调整算法参数,实时查看效果。这对于针对特定数据集调整算法以及探索参数如何影响结果非常有用。


上面的截图有些过时;从那以后,我添加了两个原始算法中没有的实验性选项:

反向处理数据集的选项(似乎至少改善了功率谱的结果)。 选项,为峰值设置硬性最小阈值。

我还在窗口中间添加了一个笨拙的缩放/平移条,只需用鼠标拖动它来缩放和平移。

模糊的构建指令:

在发布页面上有一个Windows安装程序(64位),但如果你想从源代码构建它,要点是:

安装Qt的构建工具,然后将qmake && make放在与.pro文件相同的目录下,或者 安装Qt Creator,打开.pro文件,选择任何默认的构建配置,然后按下构建和/或运行按钮(Creator的左下角)。

我只测试过Qt5。我有91%的信心,如果你手动配置组件,Qt Creator安装程序会让你安装Qt5(如果你手动配置组件,你还需要确认是否安装了Qt Charts)。Qt6可能是一个流畅的构建,也可能不是。有一天,我将测试Qt4和Qt6,使这些文档更好。也许吧。

下面是我尝试为“Smoothed z-score算法”创建一个Ruby解决方案:

module ThresholdingAlgoMixin
  def mean(array)
    array.reduce(&:+) / array.size.to_f
  end

  def stddev(array)
    array_mean = mean(array)
    Math.sqrt(array.reduce(0.0) { |a, b| a.to_f + ((b.to_f - array_mean) ** 2) } / array.size.to_f)
  end

  def thresholding_algo(lag: 5, threshold: 3.5, influence: 0.5)
    return nil if size < lag * 2
    Array.new(size, 0).tap do |signals|
      filtered = Array.new(self)

      initial_slice = take(lag)
      avg_filter = Array.new(lag - 1, 0.0) + [mean(initial_slice)]
      std_filter = Array.new(lag - 1, 0.0) + [stddev(initial_slice)]
      (lag..size-1).each do |idx|
        prev = idx - 1
        if (fetch(idx) - avg_filter[prev]).abs > threshold * std_filter[prev]
          signals[idx] = fetch(idx) > avg_filter[prev] ? 1 : -1
          filtered[idx] = (influence * fetch(idx)) + ((1-influence) * filtered[prev])
        end

        filtered_slice = filtered[idx-lag..prev]
        avg_filter[idx] = mean(filtered_slice)
        std_filter[idx] = stddev(filtered_slice)
      end
    end
  end
end

以及示例用法:

test_data = [
  1, 1, 1.1, 1, 0.9, 1, 1, 1.1, 1, 0.9, 1, 1.1, 1, 1, 0.9, 1,
  1, 1.1, 1, 1, 1, 1, 1.1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1.1, 1,
  1, 1.1, 1, 0.8, 0.9, 1, 1.2, 0.9, 1, 1, 1.1, 1.2, 1, 1.5,
  1, 3, 2, 5, 3, 2, 1, 1, 1, 0.9, 1, 1, 3, 2.6, 4, 3, 3.2, 2,
  1, 1, 0.8, 4, 4, 2, 2.5, 1, 1, 1
].extend(ThresholdingAlgoMixin)

puts test_data.thresholding_algo.inspect

# Output: [
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
#   1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0
# ]

我认为delica的Python回答器有一个bug。我不能评论他的帖子,因为我没有代表来做这件事,编辑队列已经满了,所以我可能不是第一个注意到它的人。

avgFilter[lag - 1]和stdFilter[lag - 1]在init中设置,然后在lag == i时再次设置,而不是改变[lag]值。这个结果使得第一个信号总是1。

以下是带有轻微修正的代码:

import numpy as np

class real_time_peak_detection():
    def __init__(self, array, lag, threshold, influence):
        self.y = list(array)
        self.length = len(self.y)
        self.lag = lag
        self.threshold = threshold
        self.influence = influence
        self.signals = [0] * len(self.y)
        self.filteredY = np.array(self.y).tolist()
        self.avgFilter = [0] * len(self.y)
        self.stdFilter = [0] * len(self.y)
        self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
        self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()

    def thresholding_algo(self, new_value):
        self.y.append(new_value)
        i = len(self.y) - 1
        self.length = len(self.y)
        if i < self.lag:
            return 0
        elif i == self.lag:
            self.signals = [0] * len(self.y)
            self.filteredY = np.array(self.y).tolist()
            self.avgFilter = [0] * len(self.y)
            self.stdFilter = [0] * len(self.y)
            self.avgFilter[self.lag] = np.mean(self.y[0:self.lag]).tolist()
            self.stdFilter[self.lag] = np.std(self.y[0:self.lag]).tolist()
            return 0

        self.signals += [0]
        self.filteredY += [0]
        self.avgFilter += [0]
        self.stdFilter += [0]

        if abs(self.y[i] - self.avgFilter[i - 1]) > self.threshold * self.stdFilter[i - 1]:
            if self.y[i] > self.avgFilter[i - 1]:
                self.signals[i] = 1
            else:
                self.signals[i] = -1

            self.filteredY[i] = self.influence * self.y[i] + (1 - self.influence) * self.filteredY[i - 1]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])
        else:
            self.signals[i] = 0
            self.filteredY[i] = self.y[i]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])

        return self.signals[i]

以下是平滑z-score算法的Scala版本(非惯用):

/**
  * Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
  * Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
  *
  * @param y - The input vector to analyze
  * @param lag - The lag of the moving window (i.e. how big the window is)
  * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
  * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
  * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
  */
private def smoothedZScore(y: Seq[Double], lag: Int, threshold: Double, influence: Double): Seq[Int] = {
  val stats = new SummaryStatistics()

  // the results (peaks, 1 or -1) of our algorithm
  val signals = mutable.ArrayBuffer.fill(y.length)(0)

  // filter out the signals (peaks) from our original list (using influence arg)
  val filteredY = y.to[mutable.ArrayBuffer]

  // the current average of the rolling window
  val avgFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // the current standard deviation of the rolling window
  val stdFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // init avgFilter and stdFilter
  y.take(lag).foreach(s => stats.addValue(s))

  avgFilter(lag - 1) = stats.getMean
  stdFilter(lag - 1) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)

  // loop input starting at end of rolling window
  y.zipWithIndex.slice(lag, y.length - 1).foreach {
    case (s: Double, i: Int) =>
      // if the distance between the current value and average is enough standard deviations (threshold) away
      if (Math.abs(s - avgFilter(i - 1)) > threshold * stdFilter(i - 1)) {
        // this is a signal (i.e. peak), determine if it is a positive or negative signal
        signals(i) = if (s > avgFilter(i - 1)) 1 else -1
        // filter this signal out using influence
        filteredY(i) = (influence * s) + ((1 - influence) * filteredY(i - 1))
      } else {
        // ensure this signal remains a zero
        signals(i) = 0
        // ensure this value is not filtered
        filteredY(i) = s
      }

      // update rolling average and deviation
      stats.clear()
      filteredY.slice(i - lag, i).foreach(s => stats.addValue(s))
      avgFilter(i) = stats.getMean
      stdFilter(i) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)
  }

  println(y.length)
  println(signals.length)
  println(signals)

  signals.zipWithIndex.foreach {
    case(x: Int, idx: Int) =>
      if (x == 1) {
        println(idx + " " + y(idx))
      }
  }

  val data =
    y.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "y", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "avgFilter", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s - threshold * stdFilter(i)), "name" -> "lower", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s + threshold * stdFilter(i)), "name" -> "upper", "row" -> "data") } ++
    signals.zipWithIndex.map { case (s: Int, i: Int) => Map("x" -> i, "y" -> s, "name" -> "signal", "row" -> "signal") }

  Vegas("Smoothed Z")
    .withData(data)
    .mark(Line)
    .encodeX("x", Quant)
    .encodeY("y", Quant)
    .encodeColor(
      field="name",
      dataType=Nominal
    )
    .encodeRow("row", Ordinal)
    .show

  return signals
}

下面是一个测试,返回与Python和Groovy版本相同的结果:

val y = List(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
  1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
  1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
  1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d)

val lag = 30
val threshold = 5d
val influence = 0d

smoothedZScore(y, lag, threshold, influence)

这里的要点