更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

This problem looks similar to one I encountered in a hybrid/embedded systems course, but that was related to detecting faults when the input from a sensor is noisy. We used a Kalman filter to estimate/predict the hidden state of the system, then used statistical analysis to determine the likelihood that a fault had occurred. We were working with linear systems, but nonlinear variants exist. I remember the approach being surprisingly adaptive, but it required a model of the dynamics of the system.

其他回答

下面是一个基于Groovy回答的实际Java实现。(我知道已经发布了Groovy和Kotlin实现,但对于像我这样只做Java的人来说,弄清楚如何在其他语言和Java之间转换真的很麻烦)。

(结果与他人图表相匹配)

算法实现

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.commons.math3.stat.descriptive.SummaryStatistics;

public class SignalDetector {

    public HashMap<String, List> analyzeDataForSignals(List<Double> data, int lag, Double threshold, Double influence) {

        // init stats instance
        SummaryStatistics stats = new SummaryStatistics();

        // the results (peaks, 1 or -1) of our algorithm
        List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(data.size(), 0));

        // filter out the signals (peaks) from our original list (using influence arg)
        List<Double> filteredData = new ArrayList<Double>(data);

        // the current average of the rolling window
        List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // the current standard deviation of the rolling window
        List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // init avgFilter and stdFilter
        for (int i = 0; i < lag; i++) {
            stats.addValue(data.get(i));
        }
        avgFilter.set(lag - 1, stats.getMean());
        stdFilter.set(lag - 1, Math.sqrt(stats.getPopulationVariance())); // getStandardDeviation() uses sample variance
        stats.clear();

        // loop input starting at end of rolling window
        for (int i = lag; i < data.size(); i++) {

            // if the distance between the current value and average is enough standard deviations (threshold) away
            if (Math.abs((data.get(i) - avgFilter.get(i - 1))) > threshold * stdFilter.get(i - 1)) {

                // this is a signal (i.e. peak), determine if it is a positive or negative signal
                if (data.get(i) > avgFilter.get(i - 1)) {
                    signals.set(i, 1);
                } else {
                    signals.set(i, -1);
                }

                // filter this signal out using influence
                filteredData.set(i, (influence * data.get(i)) + ((1 - influence) * filteredData.get(i - 1)));
            } else {
                // ensure this signal remains a zero
                signals.set(i, 0);
                // ensure this value is not filtered
                filteredData.set(i, data.get(i));
            }

            // update rolling average and deviation
            for (int j = i - lag; j < i; j++) {
                stats.addValue(filteredData.get(j));
            }
            avgFilter.set(i, stats.getMean());
            stdFilter.set(i, Math.sqrt(stats.getPopulationVariance()));
            stats.clear();
        }

        HashMap<String, List> returnMap = new HashMap<String, List>();
        returnMap.put("signals", signals);
        returnMap.put("filteredData", filteredData);
        returnMap.put("avgFilter", avgFilter);
        returnMap.put("stdFilter", stdFilter);

        return returnMap;

    } // end
}

主要方法

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;

public class Main {

    public static void main(String[] args) throws Exception {
        DecimalFormat df = new DecimalFormat("#0.000");

        ArrayList<Double> data = new ArrayList<Double>(Arrays.asList(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d,
                1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d, 1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d,
                1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d, 1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d,
                0.9d, 1d, 1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d));

        SignalDetector signalDetector = new SignalDetector();
        int lag = 30;
        double threshold = 5;
        double influence = 0;

        HashMap<String, List> resultsMap = signalDetector.analyzeDataForSignals(data, lag, threshold, influence);
        // print algorithm params
        System.out.println("lag: " + lag + "\t\tthreshold: " + threshold + "\t\tinfluence: " + influence);

        System.out.println("Data size: " + data.size());
        System.out.println("Signals size: " + resultsMap.get("signals").size());

        // print data
        System.out.print("Data:\t\t");
        for (double d : data) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print signals
        System.out.print("Signals:\t");
        List<Integer> signalsList = resultsMap.get("signals");
        for (int i : signalsList) {
            System.out.print(df.format(i) + "\t");
        }
        System.out.println();

        // print filtered data
        System.out.print("Filtered Data:\t");
        List<Double> filteredDataList = resultsMap.get("filteredData");
        for (double d : filteredDataList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running average
        System.out.print("Avg Filter:\t");
        List<Double> avgFilterList = resultsMap.get("avgFilter");
        for (double d : avgFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running std
        System.out.print("Std filter:\t");
        List<Double> stdFilterList = resultsMap.get("stdFilter");
        for (double d : stdFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        System.out.println();
        for (int i = 0; i < signalsList.size(); i++) {
            if (signalsList.get(i) != 0) {
                System.out.println("Point " + i + " gave signal " + signalsList.get(i));
            }
        }
    }
}

结果

lag: 30     threshold: 5.0      influence: 0.0
Data size: 74
Signals size: 74
Data:           1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.500   1.000   3.000   2.000   5.000   3.000   2.000   1.000   1.000   1.000   0.900   1.000   1.000   3.000   2.600   4.000   3.000   3.200   2.000   1.000   1.000   0.800   4.000   4.000   2.000   2.500   1.000   1.000   1.000   
Signals:        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   
Filtered Data:  1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.900   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.800   0.800   0.800   0.800   0.800   1.000   1.000   1.000   
Avg Filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.003   1.003   1.007   1.007   1.003   1.007   1.010   1.003   1.000   0.997   1.003   1.003   1.003   1.000   1.003   1.010   1.013   1.013   1.013   1.010   1.010   1.010   1.010   1.010   1.007   1.010   1.010   1.003   1.003   1.003   1.007   1.007   1.003   1.003   1.003   1.000   1.000   1.007   1.003   0.997   0.983   0.980   0.973   0.973   0.970   
Std filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.060   0.060   0.063   0.063   0.060   0.063   0.060   0.071   0.073   0.071   0.080   0.080   0.080   0.077   0.080   0.087   0.085   0.085   0.085   0.083   0.083   0.083   0.083   0.083   0.081   0.079   0.079   0.080   0.080   0.080   0.077   0.077   0.075   0.075   0.075   0.073   0.073   0.063   0.071   0.080   0.078   0.083   0.089   0.089   0.086   

Point 45 gave signal 1
Point 47 gave signal 1
Point 48 gave signal 1
Point 49 gave signal 1
Point 50 gave signal 1
Point 51 gave signal 1
Point 58 gave signal 1
Point 59 gave signal 1
Point 60 gave signal 1
Point 61 gave signal 1
Point 62 gave signal 1
Point 63 gave signal 1
Point 67 gave signal 1
Point 68 gave signal 1
Point 69 gave signal 1
Point 70 gave signal 1

c++ (Qt)演示端口,交互式参数

我已经将这个算法的演示应用程序移植到c++ (Qt)上。

代码可以在GitHub上找到这里。带有安装程序的Windows(64位)构建在发布页面上。最后,我将添加一些文档和其他发布版本。

您不能绘制点,但可以从文本文件中导入它们(用空格分隔点——换行也算作空格)。您还可以调整算法参数,实时查看效果。这对于针对特定数据集调整算法以及探索参数如何影响结果非常有用。


上面的截图有些过时;从那以后,我添加了两个原始算法中没有的实验性选项:

反向处理数据集的选项(似乎至少改善了功率谱的结果)。 选项,为峰值设置硬性最小阈值。

我还在窗口中间添加了一个笨拙的缩放/平移条,只需用鼠标拖动它来缩放和平移。

模糊的构建指令:

在发布页面上有一个Windows安装程序(64位),但如果你想从源代码构建它,要点是:

安装Qt的构建工具,然后将qmake && make放在与.pro文件相同的目录下,或者 安装Qt Creator,打开.pro文件,选择任何默认的构建配置,然后按下构建和/或运行按钮(Creator的左下角)。

我只测试过Qt5。我有91%的信心,如果你手动配置组件,Qt Creator安装程序会让你安装Qt5(如果你手动配置组件,你还需要确认是否安装了Qt Charts)。Qt6可能是一个流畅的构建,也可能不是。有一天,我将测试Qt4和Qt6,使这些文档更好。也许吧。

这种z-scores方法在峰值检测方面非常有效,也有助于异常值的去除。异常值对话经常讨论每个点的统计价值和变化数据的伦理。

但是,在来自易出错的串行通信或易出错的传感器的重复错误传感器值的情况下,错误或虚假读数中没有统计值。它们需要被识别并移除。

从视觉上看,错误是显而易见的。下图中的直线显示了需要删除的内容。但是用算法识别和消除错误是相当具有挑战性的。z分数效果很好。

下图是通过串行通信从传感器获得的值。偶尔的串行通信错误,传感器错误或两者都导致重复的,明显错误的数据点。

z-score峰值检测器能够在虚假数据点上发出信号,并生成一个干净的结果数据集,同时保留正确数据的特征:

下面是平滑z-score算法的Python / numpy实现(见上面的答案)。你可以在这里找到要点。

#!/usr/bin/env python
# Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
    signals = np.zeros(len(y))
    filteredY = np.array(y)
    avgFilter = [0]*len(y)
    stdFilter = [0]*len(y)
    avgFilter[lag - 1] = np.mean(y[0:lag])
    stdFilter[lag - 1] = np.std(y[0:lag])
    for i in range(lag, len(y)):
        if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
            if y[i] > avgFilter[i-1]:
                signals[i] = 1
            else:
                signals[i] = -1

            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])
        else:
            signals[i] = 0
            filteredY[i] = y[i]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])

    return dict(signals = np.asarray(signals),
                avgFilter = np.asarray(avgFilter),
                stdFilter = np.asarray(stdFilter))

下面是在同一个数据集上的测试,它产生的图与R/Matlab的原始答案相同

# Data
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

# Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y)+1), y)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"], color="cyan", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2)

pylab.subplot(212)
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

下面是ZSCORE算法的PHP实现:

<?php
$y = array(1,7,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,10,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1);

function mean($data, $start, $len) {
    $avg = 0;
    for ($i = $start; $i < $start+ $len; $i ++)
        $avg += $data[$i];
    return $avg / $len;
}
    
function stddev($data, $start,$len) {
    $mean = mean($data,$start,$len);
    $dev = 0;
    for ($i = $start; $i < $start+$len; $i++) 
        $dev += (($data[$i] - $mean) * ($data[$i] - $mean));
    return sqrt($dev / $len);
}

function zscore($data, $len, $lag= 20, $threshold = 1, $influence = 1) {

    $signals = array();
    $avgFilter = array();
    $stdFilter = array();
    $filteredY = array();
    $avgFilter[$lag - 1] = mean($data, 0, $lag);
    $stdFilter[$lag - 1] = stddev($data, 0, $lag);
    
    for ($i = 0; $i < $len; $i++) {
        $filteredY[$i] = $data[$i];
        $signals[$i] = 0;
    }


    for ($i=$lag; $i < $len; $i++) {
        if (abs($data[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$lag - 1]) {
            if ($data[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            }
            else {
                $signals[$i] = -1;
            }
            $filteredY[$i] = $influence * $data[$i] + (1 - $influence) * $filteredY[$i-1];
        } 
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $data[$i];
        }
        
        $avgFilter[$i] = mean($filteredY, $i - $lag, $lag);
        $stdFilter[$i] = stddev($filteredY, $i - $lag, $lag);
    }
    return $signals;
}

$sig = zscore($y, count($y));

print_r($y); echo "<br><br>";
print_r($sig); echo "<br><br>";

for ($i = 0; $i < count($y); $i++) echo $i. " " . $y[$i]. " ". $sig[$i]."<br>";