更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

如果边界值或其他标准取决于未来值,那么唯一的解决方案(没有时间机器,或其他关于未来值的知识)是推迟任何决定,直到有足够的未来值。如果你想要一个高于均值的水平,例如,20点,那么你必须等到你至少有19点才能做出任何峰值决策,否则下一个新点可能会完全超过你19点之前的阈值。

Added: If the statistical distribution of the peak heights could be heavy tailed, instead of Uniform or Gaussian, then you may need to wait until you see several thousand peaks before it starts to become unlikely that a hidden Pareto distribution won't produce a peak many times larger than any you currently have seen before or have in your current plot. Unless you somehow know in advance that the very next point can't be 1e20, it could appear, which after rescaling your plot's Y dimension, would be flat up until that point.

其他回答

@Jean-Paul Smoothed Z Score算法的Dart版本:

class SmoothedZScore {
  int lag = 5;
  num threshold = 10;
  num influence = 0.5;

  num sum(List<num> a) {
    num s = 0;
    for (int i = 0; i < a.length; i++) s += a[i];
    return s;
  }

  num mean(List<num> a) {
    return sum(a) / a.length;
  }

  num stddev(List<num> arr) {
    num arrMean = mean(arr);
    num dev = 0;
    for (int i = 0; i < arr.length; i++) dev += (arr[i] - arrMean) * (arr[i] - arrMean);
    return sqrt(dev / arr.length);
  }

  List<int> smoothedZScore(List<num> y) {
    if (y.length < lag + 2) {
      throw 'y data array too short($y.length) for given lag of $lag';
    }

    // init variables
    List<int> signals = List.filled(y.length, 0);
    List<num> filteredY = List<num>.from(y);
    List<num> leadIn = y.sublist(0, lag);

    var avgFilter = List<num>.filled(y.length, 0);
    var stdFilter = List<num>.filled(y.length, 0);
    avgFilter[lag - 1] = mean(leadIn);
    stdFilter[lag - 1] = stddev(leadIn);

    for (var i = lag; i < y.length; i++) {
      if ((y[i] - avgFilter[i - 1]).abs() > (threshold * stdFilter[i - 1])) {
        signals[i] = y[i] > avgFilter[i - 1] ? 1 : -1;
        // make influence lower
        filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i - 1];
      } else {
        signals[i] = 0; // no signal
        filteredY[i] = y[i];
      }

      // adjust the filters
      List<num> yLag = filteredY.sublist(i - lag, i);
      avgFilter[i] = mean(yLag);
      stdFilter[i] = stddev(yLag);
    }

    return signals;
  }
}

我在我的机器人项目中需要这样的东西。我想我可以归还Kotlin实现。

/**
* Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
* Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
*
* @param y - The input vector to analyze
* @param lag - The lag of the moving window (i.e. how big the window is)
* @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
* @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
* @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
*/
fun smoothedZScore(y: List<Double>, lag: Int, threshold: Double, influence: Double): Triple<List<Int>, List<Double>, List<Double>> {
    val stats = SummaryStatistics()
    // the results (peaks, 1 or -1) of our algorithm
    val signals = MutableList<Int>(y.size, { 0 })
    // filter out the signals (peaks) from our original list (using influence arg)
    val filteredY = ArrayList<Double>(y)
    // the current average of the rolling window
    val avgFilter = MutableList<Double>(y.size, { 0.0 })
    // the current standard deviation of the rolling window
    val stdFilter = MutableList<Double>(y.size, { 0.0 })
    // init avgFilter and stdFilter
    y.take(lag).forEach { s -> stats.addValue(s) }
    avgFilter[lag - 1] = stats.mean
    stdFilter[lag - 1] = Math.sqrt(stats.populationVariance) // getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size - 1).forEach { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs(y[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i] = if (y[i] > avgFilter[i - 1]) 1 else -1
            //filter this signal out using influence
            filteredY[i] = (influence * y[i]) + ((1 - influence) * filteredY[i - 1])
        } else {
            //ensure this signal remains a zero
            signals[i] = 0
            //ensure this value is not filtered
            filteredY[i] = y[i]
        }
        //update rolling average and deviation
        (i - lag..i - 1).forEach { stats.addValue(filteredY[it]) }
        avgFilter[i] = stats.getMean()
        stdFilter[i] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }
    return Triple(signals, avgFilter, stdFilter)
}

带有验证图的示例项目可以在github上找到。

不需要将极大值与平均值进行比较,还可以将极大值与相邻的最小值进行比较,其中最小值仅定义在噪声阈值之上。 如果局部最大值是>的3倍(或其他置信因子)相邻的最小值,那么这个最大值就是一个峰值。 移动窗口越宽,峰值的确定越准确。 上面使用了以窗口中间为中心的计算, 顺便说一下,而不是在窗口结束时计算(== lag)。

请注意,最大值必须被视为信号之前的增加 之后下降。

下面是@Jean-Paul为Arduino微控制器设计的平滑z分数的C语言实现,用于获取加速度计读数,并判断撞击的方向是来自左边还是右边。这表现得非常好,因为这个设备返回一个反弹信号。这是设备对峰值检测算法的输入-显示了来自右边的冲击,然后是来自左边的冲击。你可以看到最初的峰值然后传感器的振荡。

#include <stdio.h>
#include <math.h>
#include <string.h>


#define SAMPLE_LENGTH 1000

float stddev(float data[], int len);
float mean(float data[], int len);
void thresholding(float y[], int signals[], int lag, float threshold, float influence);


void thresholding(float y[], int signals[], int lag, float threshold, float influence) {
    memset(signals, 0, sizeof(int) * SAMPLE_LENGTH);
    float filteredY[SAMPLE_LENGTH];
    memcpy(filteredY, y, sizeof(float) * SAMPLE_LENGTH);
    float avgFilter[SAMPLE_LENGTH];
    float stdFilter[SAMPLE_LENGTH];

    avgFilter[lag - 1] = mean(y, lag);
    stdFilter[lag - 1] = stddev(y, lag);

    for (int i = lag; i < SAMPLE_LENGTH; i++) {
        if (fabsf(y[i] - avgFilter[i-1]) > threshold * stdFilter[i-1]) {
            if (y[i] > avgFilter[i-1]) {
                signals[i] = 1;
            } else {
                signals[i] = -1;
            }
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1];
        } else {
            signals[i] = 0;
        }
        avgFilter[i] = mean(filteredY + i-lag, lag);
        stdFilter[i] = stddev(filteredY + i-lag, lag);
    }
}

float mean(float data[], int len) {
    float sum = 0.0, mean = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        sum += data[i];
    }

    mean = sum/len;
    return mean;


}

float stddev(float data[], int len) {
    float the_mean = mean(data, len);
    float standardDeviation = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        standardDeviation += pow(data[i] - the_mean, 2);
    }

    return sqrt(standardDeviation/len);
}

int main() {
    printf("Hello, World!\n");
    int lag = 100;
    float threshold = 5;
    float influence = 0;
    float y[]=  {1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
  ....
1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1}

    int signal[SAMPLE_LENGTH];

    thresholding(y, signal,  lag, threshold, influence);

    return 0;
}

她的结果是影响= 0

不是很好,但这里的影响力= 1

这很好。

在信号处理中,峰值检测通常采用小波变换。基本上就是对时间序列数据进行离散小波变换。返回的细节系数中的过零将对应于时间序列信号中的峰值。你会在不同的细节系数水平上检测到不同的峰值振幅,这给了你多层次的分辨率。