更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

下面是这个答案的平滑z-score算法的c++实现

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}

其他回答

一种方法是根据以下观察来检测峰:

时间t是一个峰值(y (t) > y (t - 1)) & & ((t) > y (t + 1))

它通过等待上升趋势结束来避免误报。它并不完全是“实时”的,因为它会比峰值差一个dt。灵敏度可以通过要求比较的裕度来控制。在噪声检测和时延检测之间存在一种折衷。 您可以通过添加更多参数来丰富模型:

峰如果y (y (t) - (t-dt) > m) && (y (t) - y (t + dt) > m)

dt和m是控制灵敏度和延时的参数

这是你用上述算法得到的结果:

下面是在python中重现图的代码:

import numpy as np
import matplotlib.pyplot as plt
input = np.array([ 1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1.1,  1. ,  0.8,  0.9,
    1. ,  1.2,  0.9,  1. ,  1. ,  1.1,  1.2,  1. ,  1.5,  1. ,  3. ,
    2. ,  5. ,  3. ,  2. ,  1. ,  1. ,  1. ,  0.9,  1. ,  1. ,  3. ,
    2.6,  4. ,  3. ,  3.2,  2. ,  1. ,  1. ,  1. ,  1. ,  1. ])
signal = (input > np.roll(input,1)) & (input > np.roll(input,-1))
plt.plot(input)
plt.plot(signal.nonzero()[0], input[signal], 'ro')
plt.show()

通过设置m = 0.5,你可以得到一个更清晰的信号,只有一个假阳性:

下面是ZSCORE算法的PHP实现:

<?php
$y = array(1,7,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,10,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1);

function mean($data, $start, $len) {
    $avg = 0;
    for ($i = $start; $i < $start+ $len; $i ++)
        $avg += $data[$i];
    return $avg / $len;
}
    
function stddev($data, $start,$len) {
    $mean = mean($data,$start,$len);
    $dev = 0;
    for ($i = $start; $i < $start+$len; $i++) 
        $dev += (($data[$i] - $mean) * ($data[$i] - $mean));
    return sqrt($dev / $len);
}

function zscore($data, $len, $lag= 20, $threshold = 1, $influence = 1) {

    $signals = array();
    $avgFilter = array();
    $stdFilter = array();
    $filteredY = array();
    $avgFilter[$lag - 1] = mean($data, 0, $lag);
    $stdFilter[$lag - 1] = stddev($data, 0, $lag);
    
    for ($i = 0; $i < $len; $i++) {
        $filteredY[$i] = $data[$i];
        $signals[$i] = 0;
    }


    for ($i=$lag; $i < $len; $i++) {
        if (abs($data[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$lag - 1]) {
            if ($data[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            }
            else {
                $signals[$i] = -1;
            }
            $filteredY[$i] = $influence * $data[$i] + (1 - $influence) * $filteredY[$i-1];
        } 
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $data[$i];
        }
        
        $avgFilter[$i] = mean($filteredY, $i - $lag, $lag);
        $stdFilter[$i] = stddev($filteredY, $i - $lag, $lag);
    }
    return $signals;
}

$sig = zscore($y, count($y));

print_r($y); echo "<br><br>";
print_r($sig); echo "<br><br>";

for ($i = 0; $i < count($y); $i++) echo $i. " " . $y[$i]. " ". $sig[$i]."<br>";

以下是平滑z-score算法的Scala版本(非惯用):

/**
  * Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
  * Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
  *
  * @param y - The input vector to analyze
  * @param lag - The lag of the moving window (i.e. how big the window is)
  * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
  * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
  * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
  */
private def smoothedZScore(y: Seq[Double], lag: Int, threshold: Double, influence: Double): Seq[Int] = {
  val stats = new SummaryStatistics()

  // the results (peaks, 1 or -1) of our algorithm
  val signals = mutable.ArrayBuffer.fill(y.length)(0)

  // filter out the signals (peaks) from our original list (using influence arg)
  val filteredY = y.to[mutable.ArrayBuffer]

  // the current average of the rolling window
  val avgFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // the current standard deviation of the rolling window
  val stdFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // init avgFilter and stdFilter
  y.take(lag).foreach(s => stats.addValue(s))

  avgFilter(lag - 1) = stats.getMean
  stdFilter(lag - 1) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)

  // loop input starting at end of rolling window
  y.zipWithIndex.slice(lag, y.length - 1).foreach {
    case (s: Double, i: Int) =>
      // if the distance between the current value and average is enough standard deviations (threshold) away
      if (Math.abs(s - avgFilter(i - 1)) > threshold * stdFilter(i - 1)) {
        // this is a signal (i.e. peak), determine if it is a positive or negative signal
        signals(i) = if (s > avgFilter(i - 1)) 1 else -1
        // filter this signal out using influence
        filteredY(i) = (influence * s) + ((1 - influence) * filteredY(i - 1))
      } else {
        // ensure this signal remains a zero
        signals(i) = 0
        // ensure this value is not filtered
        filteredY(i) = s
      }

      // update rolling average and deviation
      stats.clear()
      filteredY.slice(i - lag, i).foreach(s => stats.addValue(s))
      avgFilter(i) = stats.getMean
      stdFilter(i) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)
  }

  println(y.length)
  println(signals.length)
  println(signals)

  signals.zipWithIndex.foreach {
    case(x: Int, idx: Int) =>
      if (x == 1) {
        println(idx + " " + y(idx))
      }
  }

  val data =
    y.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "y", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "avgFilter", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s - threshold * stdFilter(i)), "name" -> "lower", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s + threshold * stdFilter(i)), "name" -> "upper", "row" -> "data") } ++
    signals.zipWithIndex.map { case (s: Int, i: Int) => Map("x" -> i, "y" -> s, "name" -> "signal", "row" -> "signal") }

  Vegas("Smoothed Z")
    .withData(data)
    .mark(Line)
    .encodeX("x", Quant)
    .encodeY("y", Quant)
    .encodeColor(
      field="name",
      dataType=Nominal
    )
    .encodeRow("row", Ordinal)
    .show

  return signals
}

下面是一个测试,返回与Python和Groovy版本相同的结果:

val y = List(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
  1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
  1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
  1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d)

val lag = 30
val threshold = 5d
val influence = 0d

smoothedZScore(y, lag, threshold, influence)

这里的要点

另外,这个算法对我来说也很好…

sensitivity = 4; dwindow = 4; k = dwindow; data = [1., 1., 1., 1., 1., 1., 1., 1.1, 1., 0.8, 0.9, 1., 1.2, 0.9, 1., 1., 1.1, 1.2, 1., 1.5, 1., 3., 2., 5., 3., 2., 1., 1., 1., 0.9, 1., 1., 3., 2.6, 4., 3., 3.2, 2., 1., 1., 1., 1., 1. ]; //data = data.concat(data); //data = data.concat(data); var data1 = [{ name: 'original source', y: data }]; Plotly.newPlot('stage1', data1, { title: 'Sensor data', yaxis: { title: 'signal' } }); filtered = data.map((a,b,c)=>a>=Math.max(...c.slice(b-k,b))?a**3:0); var data2 = [{ name: 'filtered source', y: filtered }]; Plotly.newPlot('stage2', data2, { title: 'Filtered data<br>aₙ = aₙ³', yaxis: { title: 'signal' } }); dwindow = 6; k = dwindow; detected = filtered.map((a,b,c)=>a>Math.max(...c.slice(2))/sensitivity).map((a,b,c)=>(b>k) && c.slice(b-k,b).indexOf(a)==-1 ); var data3 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage3', data3, { title: 'Maximum in a window of 6', yaxis: { title: 'signal' } }); dwindow = 10; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / 20).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data4 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage4', data4, { title: 'Maximum in a window of 10', yaxis: { title: 'signal' } }); <script src="https://cdn.jsdelivr.net/npm/plotly.js@2.16.5/dist/plotly.min.js"></script> <div id="stage1"></div> <div id="stage2"></div> <div id="stage3"></div> <div id="stage4"></div>

我允许自己创建一个javascript版本。也许会有帮助。javascript应该是上面给出的伪代码的直接转录。可用的npm包和github repo:

https://github.com/crux/smoothed-z-score @joe_six / smoothed-z-score-peak-signal-detection

Javascript的翻译:

// javascript port of: https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/48895639#48895639

function sum(a) {
    return a.reduce((acc, val) => acc + val)
}

function mean(a) {
    return sum(a) / a.length
}

function stddev(arr) {
    const arr_mean = mean(arr)
    const r = function(acc, val) {
        return acc + ((val - arr_mean) * (val - arr_mean))
    }
    return Math.sqrt(arr.reduce(r, 0.0) / arr.length)
}

function smoothed_z_score(y, params) {
    var p = params || {}
    // init cooefficients
    const lag = p.lag || 5
    const threshold = p.threshold || 3.5
    const influence = p.influece || 0.5

    if (y === undefined || y.length < lag + 2) {
        throw ` ## y data array to short(${y.length}) for given lag of ${lag}`
    }
    //console.log(`lag, threshold, influence: ${lag}, ${threshold}, ${influence}`)

    // init variables
    var signals = Array(y.length).fill(0)
    var filteredY = y.slice(0)
    const lead_in = y.slice(0, lag)
    //console.log("1: " + lead_in.toString())

    var avgFilter = []
    avgFilter[lag - 1] = mean(lead_in)
    var stdFilter = []
    stdFilter[lag - 1] = stddev(lead_in)
    //console.log("2: " + stdFilter.toString())

    for (var i = lag; i < y.length; i++) {
        //console.log(`${y[i]}, ${avgFilter[i-1]}, ${threshold}, ${stdFilter[i-1]}`)
        if (Math.abs(y[i] - avgFilter[i - 1]) > (threshold * stdFilter[i - 1])) {
            if (y[i] > avgFilter[i - 1]) {
                signals[i] = +1 // positive signal
            } else {
                signals[i] = -1 // negative signal
            }
            // make influence lower
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i - 1]
        } else {
            signals[i] = 0 // no signal
            filteredY[i] = y[i]
        }

        // adjust the filters
        const y_lag = filteredY.slice(i - lag, i)
        avgFilter[i] = mean(y_lag)
        stdFilter[i] = stddev(y_lag)
    }

    return signals
}

module.exports = smoothed_z_score