更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

下面是这个答案的平滑z-score算法的c++实现

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}

其他回答

这是一个修改后的Fortran版本的z-score算法。 它是专门针对频率空间中传递函数的峰值(共振)检测进行修改的(每个更改在代码中都有一个小注释)。

如果在输入向量的下界附近存在共振,则第一个修改会向用户发出警告,该共振由高于某个阈值的标准偏差表示(在本例中为10%)。这仅仅意味着信号不够平坦,不足以使检测正确地初始化滤波器。

第二种修改是只将峰值的最大值添加到已找到的峰值中。这是通过将每个发现的峰值与其(滞后)前辈及其(滞后)后继者的大小进行比较来达到的。

第三个变化是尊重共振峰通常在共振频率周围表现出某种形式的对称性。因此,围绕当前数据点对称地计算平均值和std是很自然的(而不仅仅是针对之前的数据点)。这将导致更好的峰值检测行为。

这些修改的效果是,整个信号必须事先被函数知道,这是共振检测的通常情况(类似于Jean-Paul的Matlab示例,其中数据点是动态生成的,这是行不通的)。

function PeakDetect(y,lag,threshold, influence)
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer, dimension(size(y)) :: PeakDetect
    real, dimension(size(y)) :: filteredY, avgFilter, stdFilter
    integer :: lag, ii
    real :: threshold, influence

    ! Executing part
    PeakDetect = 0
    filteredY = 0.0
    filteredY(1:lag+1) = y(1:lag+1)
    avgFilter = 0.0
    avgFilter(lag+1) = mean(y(1:2*lag+1))
    stdFilter = 0.0
    stdFilter(lag+1) = std(y(1:2*lag+1))

    if (stdFilter(lag+1)/avgFilter(lag+1)>0.1) then ! If the coefficient of variation exceeds 10%, the signal is too uneven at the start, possibly because of a peak.
        write(unit=*,fmt=1001)
1001        format(1X,'Warning: Peak detection might have failed, as there may be a peak at the edge of the frequency range.',/)
    end if
    do ii = lag+2, size(y)
        if (abs(y(ii) - avgFilter(ii-1)) > threshold * stdFilter(ii-1)) then
            ! Find only the largest outstanding value which is only the one greater than its predecessor and its successor
            if (y(ii) > avgFilter(ii-1) .AND. y(ii) > y(ii-1) .AND. y(ii) > y(ii+1)) then
                PeakDetect(ii) = 1
            end if
            filteredY(ii) = influence * y(ii) + (1 - influence) * filteredY(ii-1)
        else
            filteredY(ii) = y(ii)
        end if
        ! Modified with respect to the original code. Mean and standard deviation are calculted symmetrically around the current point
        avgFilter(ii) = mean(filteredY(ii-lag:ii+lag))
        stdFilter(ii) = std(filteredY(ii-lag:ii+lag))
    end do
end function PeakDetect

real function mean(y)
    !> @brief Calculates the mean of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    mean = sum(y)/N
end function mean

real function std(y)
    !> @brief Calculates the standard deviation of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    std = sqrt((N*dot_product(y,y) - sum(y)**2) / (N*(N-1)))
end function std

对于我的应用程序,算法的工作就像一个魅力!

This problem looks similar to one I encountered in a hybrid/embedded systems course, but that was related to detecting faults when the input from a sensor is noisy. We used a Kalman filter to estimate/predict the hidden state of the system, then used statistical analysis to determine the likelihood that a fault had occurred. We were working with linear systems, but nonlinear variants exist. I remember the approach being surprisingly adaptive, but it required a model of the dynamics of the system.

这种z-scores方法在峰值检测方面非常有效,也有助于异常值的去除。异常值对话经常讨论每个点的统计价值和变化数据的伦理。

但是,在来自易出错的串行通信或易出错的传感器的重复错误传感器值的情况下,错误或虚假读数中没有统计值。它们需要被识别并移除。

从视觉上看,错误是显而易见的。下图中的直线显示了需要删除的内容。但是用算法识别和消除错误是相当具有挑战性的。z分数效果很好。

下图是通过串行通信从传感器获得的值。偶尔的串行通信错误,传感器错误或两者都导致重复的,明显错误的数据点。

z-score峰值检测器能够在虚假数据点上发出信号,并生成一个干净的结果数据集,同时保留正确数据的特征:

鲁棒峰值检测算法(使用z-scores)

I came up with an algorithm that works very well for these types of datasets. It is based on the principle of dispersion: if a new datapoint is a given x number of standard deviations away from some moving mean, the algorithm signals (also called z-score). The algorithm is very robust because it constructs a separate moving mean and deviation, such that signals do not corrupt the threshold. Future signals are therefore identified with approximately the same accuracy, regardless of the amount of previous signals. The algorithm takes 3 inputs: lag = the lag of the moving window, threshold = the z-score at which the algorithm signals and influence = the influence (between 0 and 1) of new signals on the mean and standard deviation. For example, a lag of 5 will use the last 5 observations to smooth the data. A threshold of 3.5 will signal if a datapoint is 3.5 standard deviations away from the moving mean. And an influence of 0.5 gives signals half of the influence that normal datapoints have. Likewise, an influence of 0 ignores signals completely for recalculating the new threshold. An influence of 0 is therefore the most robust option (but assumes stationarity); putting the influence option at 1 is least robust. For non-stationary data, the influence option should therefore be put somewhere between 0 and 1.

其工作原理如下:

伪代码

# Let y be a vector of timeseries data of at least length lag+2
# Let mean() be a function that calculates the mean
# Let std() be a function that calculates the standard deviaton
# Let absolute() be the absolute value function

# Settings (these are examples: choose what is best for your data!)
set lag to 5;          # average and std. are based on past 5 observations
set threshold to 3.5;  # signal when data point is 3.5 std. away from average
set influence to 0.5;  # between 0 (no influence) and 1 (full influence)

# Initialize variables
set signals to vector 0,...,0 of length of y;   # Initialize signal results
set filteredY to y(1),...,y(lag)                # Initialize filtered series
set avgFilter to null;                          # Initialize average filter
set stdFilter to null;                          # Initialize std. filter
set avgFilter(lag) to mean(y(1),...,y(lag));    # Initialize first value average
set stdFilter(lag) to std(y(1),...,y(lag));     # Initialize first value std.

for i=lag+1,...,t do
  if absolute(y(i) - avgFilter(i-1)) > threshold*stdFilter(i-1) then
    if y(i) > avgFilter(i-1) then
      set signals(i) to +1;                     # Positive signal
    else
      set signals(i) to -1;                     # Negative signal
    end
    set filteredY(i) to influence*y(i) + (1-influence)*filteredY(i-1);
  else
    set signals(i) to 0;                        # No signal
    set filteredY(i) to y(i);
  end
  set avgFilter(i) to mean(filteredY(i-lag+1),...,filteredY(i));
  set stdFilter(i) to std(filteredY(i-lag+1),...,filteredY(i));
end

下面是为数据选择良好参数的经验法则。


Demo

这个演示的Matlab代码可以在这里找到。要使用演示,只需运行它并单击上面的图表自己创建一个时间序列。算法在绘制滞后观测数后开始工作。


结果

对于原始问题,当使用以下设置时,该算法将给出以下输出:滞后= 30,阈值= 5,影响= 0:


在不同编程语言中的实现:

Matlab (me) R (me) Golang (Xeoncross) Golang [efficient version] (Micah Parks) Python (R Kiselev) Python [efficient version] (delica) Swift (me) Groovy (JoshuaCWebDeveloper) C++ [interactive parameters] (Jason C) C++ (Animesh Pandey) Rust (swizard) Scala (Mike Roberts) Kotlin (leoderprofi) Ruby (Kimmo Lehto) Fortran [for resonance detection] (THo) Julia (Matt Camp) C# (Ocean Airdrop) C (DavidC) Java (takanuva15) JavaScript (Dirk Lüsebrink) TypeScript (Jerry Gamble) Perl (Alen) PHP (radhoo) PHP (gtjamesa) Dart (Sga)


配置算法的经验法则

lag: the lag parameter determines how much your data will be smoothed and how adaptive the algorithm is to changes in the long-term average of the data. The more stationary your data is, the more lags you should include (this should improve the robustness of the algorithm). If your data contains time-varying trends, you should consider how quickly you want the algorithm to adapt to these trends. I.e., if you put lag at 10, it takes 10 'periods' before the algorithm's treshold is adjusted to any systematic changes in the long-term average. So choose the lag parameter based on the trending behavior of your data and how adaptive you want the algorithm to be.

influence: this parameter determines the influence of signals on the algorithm's detection threshold. If put at 0, signals have no influence on the threshold, such that future signals are detected based on a threshold that is calculated with a mean and standard deviation that is not influenced by past signals. If put at 0.5, signals have half the influence of normal data points. Another way to think about this is that if you put the influence at 0, you implicitly assume stationarity (i.e. no matter how many signals there are, you always expect the time series to return to the same average over the long term). If this is not the case, you should put the influence parameter somewhere between 0 and 1, depending on the extent to which signals can systematically influence the time-varying trend of the data. E.g., if signals lead to a structural break of the long-term average of the time series, the influence parameter should be put high (close to 1) so the threshold can react to structural breaks quickly.

threshold: the threshold parameter is the number of standard deviations from the moving mean above which the algorithm will classify a new datapoint as being a signal. For example, if a new datapoint is 4.0 standard deviations above the moving mean and the threshold parameter is set as 3.5, the algorithm will identify the datapoint as a signal. This parameter should be set based on how many signals you expect. For example, if your data is normally distributed, a threshold (or: z-score) of 3.5 corresponds to a signaling probability of 0.00047 (from this table), which implies that you expect a signal once every 2128 datapoints (1/0.00047). The threshold therefore directly influences how sensitive the algorithm is and thereby also determines how often the algorithm signals. Examine your own data and choose a sensible threshold that makes the algorithm signal when you want it to (some trial-and-error might be needed here to get to a good threshold for your purpose).


警告:上面的代码每次运行时都会遍历所有的数据点。在实现这段代码时,请确保将信号的计算拆分为一个单独的函数(没有循环)。然后当一个新的数据点到达时,更新filteredY, avgFilter和stdFilter一次。不要每次有新的数据点时都重新计算所有数据的信号(就像上面的例子一样),这在实时应用程序中是非常低效和缓慢的。

其他修改算法的方法(为了潜在的改进)有:

使用中位数而不是平均值 使用稳健的尺度测量,如中位数绝对偏差(MAD),而不是标准偏差 使用信号裕度,这样信号就不会频繁切换 更改影响参数的工作方式 区别对待上下信号(不对称处理) 创建一个单独的影响参数的平均值和标准(在这个Swift翻译)


(已知)学术引用此StackOverflow的答案:

Cai, Y., Wang, X., Joos, G., & Kamwa, I. (2022). An Online Data-Driven Method to Locate Forced Oscillation Sources from Power Plants Based on Sparse Identification of Nonlinear Dynamics (SINDy). IEEE Transactions on Power Systems. Yang, S., Yim, J., Kim, J., & Shin, H. V. (2022). CatchLive: Real-time Summarization of Live Streams with Stream Content and Interaction Data. CHI Conference on Human Factors in Computing Systems, 1-20. Feng, D., Tan, Z., Engwirda, D., Liao, C., Xu, D., Bisht, G., ... & Leung, R. (2022). Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh. Hydrology and Earth System Sciences Discussions, 1-31 [preprint]. Link, J., Perst, T., Stoeve, M., & Eskofier, B. M. (2022). Wearable sensors for activity recognition in ultimate frisbee using convolutional neural networks and transfer learning. Sensors, 22(7), 2560. Romeiro, J. M. N., Torres, F. T. P., & Pirotti, F. (2021). Evaluation of Effect of Prescribed Fires Using Spectral Indices and SAR Data. Bollettino della società italiana di fotogrammetria e topografia, (2), 36-56. Moore, J., Goffin, P., Wiese, J., & Meyer, M. (2021). An Interview Method for Engaging Personal Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(4), 1-28. Rykov, Y., Thach, T. Q., Bojic, I., Christopoulos, G., & Car, J. (2021). Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling. JMIR mHealth and uHealth, 9(10), e24872. Hong, Y., Xin, Y., Martin, H., Bucher, D., & Raubal, M. (2021). A Clustering-Based Framework for Individual Travel Behaviour Change Detection. In 11th International Conference on Geographic Information Science (GIScience 2021)-Part II. Grammenos, A., Kalyvianaki, E., & Pietzuch, P. (2021). Pronto: Federated Task Scheduling. arXiv preprint arXiv:2104.13429. Courtial, N. (2020). Fusion d’images multimodales pour l’assistance de procédures d’électrophysiologie cardiaque. Doctoral dissertation, Université Rennes. Beckman, W. F., Jiménez, M. Á. L., Moerland, P. D., Westerhoff, H. V., & Verschure, P. J. (2020). 4sUDRB-sequencing for genome-wide transcription bursting quantification in breast cancer cells. bioRxiv. Olkhovskiy, M., Müllerová, E., & Martínek, P. (2020). Impulse signals classification using one dimensional convolutional neural network. Journal of Electrical Engineering, 71(6), 397-405. Gao, S., & Calderon, D. P. (2020). Robust alternative to the righting reflex to assess arousal in rodents. Scientific reports, 10(1), 1-11. Chen, G. & Dong, W. (2020). Reactive Jamming and Attack Mitigation over Cross-Technology Communication Links. ACM Transactions on Sensor Networks, 17(1). Takahashi, R., Fukumoto, M., Han, C., Sasatani, T., Narusue, Y., & Kawahara, Y. (2020). TelemetRing: A Batteryless and Wireless Ring-shaped Keyboard using Passive Inductive Telemetry. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (pp. 1161-1168). Negus, M. J., Moore, M. R., Oliver, J. M., Cimpeanu, R. (2020). Droplet impact onto a spring-supported plate: analysis and simulations. Journal of Engineering Mathematics, 128(3). Yin, C. (2020). Dinucleotide repeats in coronavirus SARS-CoV-2 genome: evolutionary implications. ArXiv e-print, accessible from: https://arxiv.org/pdf/2006.00280.pdf Esnaola-Gonzalez, I., Gómez-Omella, M., Ferreiro, S., Fernandez, I., Lázaro, I., & García, E. (2020). An IoT Platform Towards the Enhancement of Poultry Production Chains. Sensors, 20(6), 1549. Gao, S., & Calderon, D. P. (2020). Continuous regimens of cortico-motor integration calibrate levels of arousal during emergence from anesthesia. bioRxiv. Cloud, B., Tarien, B., Liu, A., Shedd, T., Lin, X., Hubbard, M., ... & Moore, J. K. (2019). Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics. PloS one, 14(12). Ceyssens, F., Carmona, M. B., Kil, D., Deprez, M., Tooten, E., Nuttin, B., ... & Puers, R. (2019). Chronic neural recording with probes of subcellular cross-section using 0.06 mm² dissolving microneedles as insertion device. Sensors and Actuators B: Chemical, 284, pp. 369-376. Dons, E., Laeremans, M., Orjuela, J. P., Avila-Palencia, I., de Nazelle, A., Nieuwenhuijsen, M., ... & Nawrot, T. (2019). Transport Most Likely to Cause Air Pollution Peak Exposures in Everyday Life: Evidence from over 2000 Days of Personal Monitoring. Atmospheric Environment, 213, 424-432. Schaible B.J., Snook K.R., Yin J., et al. (2019). Twitter conversations and English news media reports on poliomyelitis in five different countries, January 2014 to April 2015. The Permanente Journal, 23, 18-181. Lima, B. (2019). Object Surface Exploration Using a Tactile-Enabled Robotic Fingertip (Doctoral dissertation, Université d'Ottawa/University of Ottawa). Lima, B. M. R., Ramos, L. C. S., de Oliveira, T. E. A., da Fonseca, V. P., & Petriu, E. M. (2019). Heart Rate Detection Using a Multimodal Tactile Sensor and a Z-score Based Peak Detection Algorithm. CMBES Proceedings, 42. Lima, B. M. R., de Oliveira, T. E. A., da Fonseca, V. P., Zhu, Q., Goubran, M., Groza, V. Z., & Petriu, E. M. (2019, June). Heart Rate Detection Using a Miniaturized Multimodal Tactile Sensor. In 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). IEEE. Ting, C., Field, R., Quach, T., Bauer, T. (2019). Generalized Boundary Detection Using Compression-based Analytics. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, pp. 3522-3526. Carrier, E. E. (2019). Exploiting compression in solving discretized linear systems. Doctoral dissertation, University of Illinois at Urbana-Champaign. Khandakar, A., Chowdhury, M. E., Ahmed, R., Dhib, A., Mohammed, M., Al-Emadi, N. A., & Michelson, D. (2019). Portable system for monitoring and controlling driver behavior and the use of a mobile phone while driving. Sensors, 19(7), 1563. Baskozos, G., Dawes, J. M., Austin, J. S., Antunes-Martins, A., McDermott, L., Clark, A. J., ... & Orengo, C. (2019). Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain, 160(2), 463. Cloud, B., Tarien, B., Crawford, R., & Moore, J. (2018). Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics. engrXiv Preprints. Zajdel, T. J. (2018). Electronic Interfaces for Bacteria-Based Biosensing. Doctoral dissertation, UC Berkeley. Perkins, P., Heber, S. (2018). Identification of Ribosome Pause Sites Using a Z-Score Based Peak Detection Algorithm. IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), ISBN: 978-1-5386-8520-4. Moore, J., Goffin, P., Meyer, M., Lundrigan, P., Patwari, N., Sward, K., & Wiese, J. (2018). Managing In-home Environments through Sensing, Annotating, and Visualizing Air Quality Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 128. Lo, O., Buchanan, W. J., Griffiths, P., and Macfarlane, R. (2018), Distance Measurement Methods for Improved Insider Threat Detection, Security and Communication Networks, Vol. 2018, Article ID 5906368. Apurupa, N. V., Singh, P., Chakravarthy, S., & Buduru, A. B. (2018). A critical study of power consumption patterns in Indian Apartments. Doctoral dissertation, IIIT-Delhi. Scirea, M. (2017). Affective Music Generation and its effect on player experience. Doctoral dissertation, IT University of Copenhagen, Digital Design. Scirea, M., Eklund, P., Togelius, J., & Risi, S. (2017). Primal-improv: Towards co-evolutionary musical improvisation. Computer Science and Electronic Engineering (CEEC), 2017 (pp. 172-177). IEEE. Catalbas, M. C., Cegovnik, T., Sodnik, J. and Gulten, A. (2017). Driver fatigue detection based on saccadic eye movements, 10th International Conference on Electrical and Electronics Engineering (ELECO), pp. 913-917.

其他工作使用的算法从这个答案

Bergamini, E. and E. Mourlon-Druol (2021). Talking about Europe: exploring 70 years of news archives. Working Paper 04/2021, Bruegel. Cox, G. (2020). Peak Detection in a Measured Signal. Online article on https://www.baeldung.com/cs/signal-peak-detection. Raimundo, D. W. (2020). SwitP: Mobile Application for Real-Time Swimming Analysis.. Semester Thesis, ETH Zürich. Bernardi, D. (2019). A feasibility study on pairing a smartwatch and a mobile device through multi-modal gestures. Master thesis, Aalto University. Lemmens, E. (2018). Outlier detection in event logs by using statistical methods, Master thesis, University of Eindhoven. Willems, P. (2017). Mood controlled affective ambiences for the elderly, Master thesis, University of Twente. Ciocirdel, G. D. and Varga, M. (2016). Election Prediction Based on Wikipedia Pageviews. Project paper, Vrije Universiteit Amsterdam.

算法的其他应用从这个答案

Avo审计dbt包。Avo公司(下一代分析治理)。 用OpenBCI系统合成语音,SarahK01。 Python包:机器学习金融实验室,基于De Prado, m.l.(2018)的工作。金融机器学习的进展。John Wiley & Sons。 Adafruit CircuitPlayground Library, Adafruit board (Adafruit Industries) 步长跟踪算法,Android App (jeeshnair) R包:《动物追踪者》(乔·钱皮恩、西娅·苏基安托)

链接到其他峰值检测算法

噪声正弦时间序列中的实时峰值检测


如何引用该算法:

Brakel, J.P.G. van(2014)。使用z分数的鲁棒峰值检测算法。堆栈溢出。下载地址:https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362(版本:2020-11-08)。

助理 @misc{brakel2014,作者= {Brakel, J.P.G van},标题={使用z-scores的鲁棒峰值检测算法},url = {https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362},语言= {en},年份= {2014},urldate ={2022-04-12},期刊= {Stack Overflow}, howpublished = {https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362}}


如果你在某个地方使用这个功能,请使用上面的参考资料来感谢我。如果你对算法有任何问题,请在下面的评论中发表,或在LinkedIn上与我联系。


c++实现

#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <cmath>
#include <iterator>
#include <numeric>

using namespace std;

typedef long double ld;
typedef unsigned int uint;
typedef std::vector<ld>::iterator vec_iter_ld;

/**
 * Overriding the ostream operator for pretty printing vectors.
 */
template<typename T>
std::ostream &operator<<(std::ostream &os, std::vector<T> vec) {
    os << "[";
    if (vec.size() != 0) {
        std::copy(vec.begin(), vec.end() - 1, std::ostream_iterator<T>(os, " "));
        os << vec.back();
    }
    os << "]";
    return os;
}

/**
 * This class calculates mean and standard deviation of a subvector.
 * This is basically stats computation of a subvector of a window size qual to "lag".
 */
class VectorStats {
public:
    /**
     * Constructor for VectorStats class.
     *
     * @param start - This is the iterator position of the start of the window,
     * @param end   - This is the iterator position of the end of the window,
     */
    VectorStats(vec_iter_ld start, vec_iter_ld end) {
        this->start = start;
        this->end = end;
        this->compute();
    }

    /**
     * This method calculates the mean and standard deviation using STL function.
     * This is the Two-Pass implementation of the Mean & Variance calculation.
     */
    void compute() {
        ld sum = std::accumulate(start, end, 0.0);
        uint slice_size = std::distance(start, end);
        ld mean = sum / slice_size;
        std::vector<ld> diff(slice_size);
        std::transform(start, end, diff.begin(), [mean](ld x) { return x - mean; });
        ld sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
        ld std_dev = std::sqrt(sq_sum / slice_size);

        this->m1 = mean;
        this->m2 = std_dev;
    }

    ld mean() {
        return m1;
    }

    ld standard_deviation() {
        return m2;
    }

private:
    vec_iter_ld start;
    vec_iter_ld end;
    ld m1;
    ld m2;
};

/**
 * This is the implementation of the Smoothed Z-Score Algorithm.
 * This is direction translation of https://stackoverflow.com/a/22640362/1461896.
 *
 * @param input - input signal
 * @param lag - the lag of the moving window
 * @param threshold - the z-score at which the algorithm signals
 * @param influence - the influence (between 0 and 1) of new signals on the mean and standard deviation
 * @return a hashmap containing the filtered signal and corresponding mean and standard deviation.
 */
unordered_map<string, vector<ld>> z_score_thresholding(vector<ld> input, int lag, ld threshold, ld influence) {
    unordered_map<string, vector<ld>> output;

    uint n = (uint) input.size();
    vector<ld> signals(input.size());
    vector<ld> filtered_input(input.begin(), input.end());
    vector<ld> filtered_mean(input.size());
    vector<ld> filtered_stddev(input.size());

    VectorStats lag_subvector_stats(input.begin(), input.begin() + lag);
    filtered_mean[lag - 1] = lag_subvector_stats.mean();
    filtered_stddev[lag - 1] = lag_subvector_stats.standard_deviation();

    for (int i = lag; i < n; i++) {
        if (abs(input[i] - filtered_mean[i - 1]) > threshold * filtered_stddev[i - 1]) {
            signals[i] = (input[i] > filtered_mean[i - 1]) ? 1.0 : -1.0;
            filtered_input[i] = influence * input[i] + (1 - influence) * filtered_input[i - 1];
        } else {
            signals[i] = 0.0;
            filtered_input[i] = input[i];
        }
        VectorStats lag_subvector_stats(filtered_input.begin() + (i - lag), filtered_input.begin() + i);
        filtered_mean[i] = lag_subvector_stats.mean();
        filtered_stddev[i] = lag_subvector_stats.standard_deviation();
    }

    output["signals"] = signals;
    output["filtered_mean"] = filtered_mean;
    output["filtered_stddev"] = filtered_stddev;

    return output;
};

int main() {
    vector<ld> input = {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0,
                        1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0,
                        1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0, 3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0,
                        1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0, 1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

    int lag = 30;
    ld threshold = 5.0;
    ld influence = 0.0;
    unordered_map<string, vector<ld>> output = z_score_thresholding(input, lag, threshold, influence);
    cout << output["signals"] << endl;
}