更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

这是一个Python实现的鲁棒峰值检测算法算法。

初始化和计算部分被分开,只有filtered_y数组被保留,它的最大大小等于延迟,因此内存没有增加。(结果与上述答案相同)。 为了绘制图形,还保留了标签数组。

我做了一个github要点。

import numpy as np
import pylab

def init(x, lag, threshold, influence):
    '''
    Smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''

    labels = np.zeros(lag)
    filtered_y = np.array(x[0:lag])
    avg_filter = np.zeros(lag)
    std_filter = np.zeros(lag)
    var_filter = np.zeros(lag)

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])

    return dict(avg=avg_filter[lag - 1], var=var_filter[lag - 1],
                std=std_filter[lag - 1], filtered_y=filtered_y,
                labels=labels)


def add(result, single_value, lag, threshold, influence):
    previous_avg = result['avg']
    previous_var = result['var']
    previous_std = result['std']
    filtered_y = result['filtered_y']
    labels = result['labels']

    if abs(single_value - previous_avg) > threshold * previous_std:
        if single_value > previous_avg:
            labels = np.append(labels, 1)
        else:
            labels = np.append(labels, -1)

        # calculate the new filtered element using the influence factor
        filtered_y = np.append(filtered_y, influence * single_value
                               + (1 - influence) * filtered_y[-1])
    else:
        labels = np.append(labels, 0)
        filtered_y = np.append(filtered_y, single_value)

    # update avg as sum of the previuos avg + the lag * (the new calculated item - calculated item at position (i - lag))
    current_avg_filter = previous_avg + 1. / lag * (filtered_y[-1]
            - filtered_y[len(filtered_y) - lag - 1])

    # update variance as the previuos element variance + 1 / lag * new recalculated item - the previous avg -
    current_var_filter = previous_var + 1. / lag * ((filtered_y[-1]
            - previous_avg) ** 2 - (filtered_y[len(filtered_y) - 1
            - lag] - previous_avg) ** 2 - (filtered_y[-1]
            - filtered_y[len(filtered_y) - 1 - lag]) ** 2 / lag)  # the recalculated element at pos (lag) - avg of the previuos - new recalculated element - recalculated element at lag pos ....

    # calculate standard deviation for current element as sqrt (current variance)
    current_std_filter = np.sqrt(current_var_filter)

    return dict(avg=current_avg_filter, var=current_var_filter,
                std=current_std_filter, filtered_y=filtered_y[1:],
                labels=labels)

lag = 30
threshold = 5
influence = 0

y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Run algo with settings from above
result = init(y[:lag], lag=lag, threshold=threshold, influence=influence)

i = open('quartz2', 'r')
for i in y[lag:]:
    result = add(result, i, lag, threshold, influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y) + 1), y)
pylab.subplot(212)
pylab.step(np.arange(1, len(y) + 1), result['labels'], color='red',
           lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()

其他回答

如果你的数据在一个数据库表中,这里是一个简单的z-score算法的SQL版本:

with data_with_zscore as (
    select
        date_time,
        value,
        value / (avg(value) over ()) as pct_of_mean,
        (value - avg(value) over ()) / (stdev(value) over ()) as z_score
    from {{tablename}}  where datetime > '2018-11-26' and datetime < '2018-12-03'
)


-- select all
select * from data_with_zscore 

-- select only points greater than a certain threshold
select * from data_with_zscore where z_score > abs(2)

下面是这个答案的平滑z-score算法的c++实现

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}

在计算拓扑学中,持久同调的思想导致一个有效的 -快如排序数字-解决方案。它不仅检测峰值,还以一种自然的方式量化峰值的“重要性”,使您能够选择对您重要的峰值。

算法的总结。 在一维设置(时间序列,实值信号)中,算法可以简单地描述为下图:

Think of the function graph (or its sub-level set) as a landscape and consider a decreasing water level starting at level infinity (or 1.8 in this picture). While the level decreases, at local maxima islands pop up. At local minima these islands merge together. One detail in this idea is that the island that appeared later in time is merged into the island that is older. The "persistence" of an island is its birth time minus its death time. The lengths of the blue bars depict the persistence, which is the above mentioned "significance" of a peak.

效率。 在对函数值进行排序之后,找到一个在线性时间内运行的实现并不难——实际上它是一个单一的、简单的循环。因此,这种实现在实践中应该是快速的,也很容易实现。

参考文献 一篇关于整个故事的文章和对持久同调(计算代数拓扑中的一个领域)动机的引用可以在这里找到: https://www.sthu.org/blog/13-perstopology-peakdetection/index.html

下面是ZSCORE算法的PHP实现:

<?php
$y = array(1,7,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,10,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1);

function mean($data, $start, $len) {
    $avg = 0;
    for ($i = $start; $i < $start+ $len; $i ++)
        $avg += $data[$i];
    return $avg / $len;
}
    
function stddev($data, $start,$len) {
    $mean = mean($data,$start,$len);
    $dev = 0;
    for ($i = $start; $i < $start+$len; $i++) 
        $dev += (($data[$i] - $mean) * ($data[$i] - $mean));
    return sqrt($dev / $len);
}

function zscore($data, $len, $lag= 20, $threshold = 1, $influence = 1) {

    $signals = array();
    $avgFilter = array();
    $stdFilter = array();
    $filteredY = array();
    $avgFilter[$lag - 1] = mean($data, 0, $lag);
    $stdFilter[$lag - 1] = stddev($data, 0, $lag);
    
    for ($i = 0; $i < $len; $i++) {
        $filteredY[$i] = $data[$i];
        $signals[$i] = 0;
    }


    for ($i=$lag; $i < $len; $i++) {
        if (abs($data[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$lag - 1]) {
            if ($data[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            }
            else {
                $signals[$i] = -1;
            }
            $filteredY[$i] = $influence * $data[$i] + (1 - $influence) * $filteredY[$i-1];
        } 
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $data[$i];
        }
        
        $avgFilter[$i] = mean($filteredY, $i - $lag, $lag);
        $stdFilter[$i] = stddev($filteredY, $i - $lag, $lag);
    }
    return $signals;
}

$sig = zscore($y, count($y));

print_r($y); echo "<br><br>";
print_r($sig); echo "<br><br>";

for ($i = 0; $i < count($y); $i++) echo $i. " " . $y[$i]. " ". $sig[$i]."<br>";

我为Jean-Paul最受欢迎的答案写了一个Go包。它假设y值的类型为float64。

github.com/MicahParks/peakdetect

下面的示例使用了这个包,并基于上面提到的流行答案中的R示例。它在编译时没有任何依赖关系,试图保持较低的内存占用,并且在有新数据点进入时不重新处理过去的点。该项目有100%的测试覆盖率,主要来自上述R示例的输入和输出。但是,如果有人发现任何错误,请打开一个GitHub问题。

编辑:我对v0.0.5进行了性能改进,似乎快了10倍!它使用Welford的方法进行初始化,并使用类似的方法计算滞后期(滑动窗口)的平均值和总体标准偏差。特别感谢另一个帖子的回答:https://stackoverflow.com/a/14638138/14797322

下面是基于R例子的Golang例子:

package main

import (
    "fmt"
    "log"

    "github.com/MicahParks/peakdetect"
)

// This example is the equivalent of the R example from the algorithm's author.
// https://stackoverflow.com/a/54507329/14797322
func main() {
    data := []float64{1, 1, 1.1, 1, 0.9, 1, 1, 1.1, 1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1, 1.1, 1, 1, 1, 1, 1.1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1.1, 1, 1, 1.1, 1, 0.8, 0.9, 1, 1.2, 0.9, 1, 1, 1.1, 1.2, 1, 1.5, 1, 3, 2, 5, 3, 2, 1, 1, 1, 0.9, 1, 1, 3, 2.6, 4, 3, 3.2, 2, 1, 1, 0.8, 4, 4, 2, 2.5, 1, 1, 1}

    // Algorithm configuration from example.
    const (
        lag       = 30
        threshold = 5
        influence = 0
    )

    // Create then initialize the peak detector.
    detector := peakdetect.NewPeakDetector()
    err := detector.Initialize(influence, threshold, data[:lag]) // The length of the initial values is the lag.
    if err != nil {
        log.Fatalf("Failed to initialize peak detector.\nError: %s", err)
    }

    // Start processing new data points and determine what signal, if any they produce.
    //
    // This method, .Next(), is best for when data is being processed in a stream, but this simply iterates over a slice.
    nextDataPoints := data[lag:]
    for i, newPoint := range nextDataPoints {
        signal := detector.Next(newPoint)
        var signalType string
        switch signal {
        case peakdetect.SignalNegative:
            signalType = "negative"
        case peakdetect.SignalNeutral:
            signalType = "neutral"
        case peakdetect.SignalPositive:
            signalType = "positive"
        }

        println(fmt.Sprintf("Data point at index %d has the signal: %s", i+lag, signalType))
    }

    // This method, .NextBatch(), is a helper function for processing many data points at once. It's returned slice
    // should produce the same signal outputs as the loop above.
    signals := detector.NextBatch(nextDataPoints)
    println(fmt.Sprintf("1:1 ratio of batch inputs to signal outputs: %t", len(signals) == len(nextDataPoints)))
}