我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

如果你可以使用SQL语法——比如,如果你使用LINQ访问一个结构或数组的字段,或者直接访问一个数据库,其中有一个名为“Alphabet”的表,只有一个字符字段“Letter”,你可以适应以下代码:

SELECT A.Letter, B.Letter, C.Letter
FROM Alphabet AS A, Alphabet AS B, Alphabet AS C
WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter
AND A.Letter<B.Letter AND B.Letter<C.Letter

这将返回所有3个字母的组合,不管你在表格“字母表”中有多少个字母(它可以是3,8,10,27等)。

如果你想要的是所有的排列,而不是组合(也就是说,你想要“ACB”和“ABC”被视为不同的,而不是只出现一次),只需删除最后一行(and一行),就完成了。

Post-Edit:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。Adam Hughes的答案是完整的,不幸的是我还不能投票。这个答案很简单,但只适用于你想要三样东西的时候。

其他回答

这里你有一个用c#编写的该算法的惰性评估版本:

    static bool nextCombination(int[] num, int n, int k)
    {
        bool finished, changed;

        changed = finished = false;

        if (k > 0)
        {
            for (int i = k - 1; !finished && !changed; i--)
            {
                if (num[i] < (n - 1) - (k - 1) + i)
                {
                    num[i]++;
                    if (i < k - 1)
                    {
                        for (int j = i + 1; j < k; j++)
                        {
                            num[j] = num[j - 1] + 1;
                        }
                    }
                    changed = true;
                }
                finished = (i == 0);
            }
        }

        return changed;
    }

    static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
    {
        T[] elem = elements.ToArray();
        int size = elem.Length;

        if (k <= size)
        {
            int[] numbers = new int[k];
            for (int i = 0; i < k; i++)
            {
                numbers[i] = i;
            }

            do
            {
                yield return numbers.Select(n => elem[n]);
            }
            while (nextCombination(numbers, size, k));
        }
    }

及测试部分:

    static void Main(string[] args)
    {
        int k = 3;
        var t = new[] { "dog", "cat", "mouse", "zebra"};

        foreach (IEnumerable<string> i in Combinations(t, k))
        {
            Console.WriteLine(string.Join(",", i));
        }
    }

希望这对你有帮助!


另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。

private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
    if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
        return true;

    if (num[k - 1] + 1 == n)
        return false;

    ++num[k - 1];
    for (int i = 0; i < k - 1; ++i)
        num[i] = i;

    return true;
}

例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

但如果你跑

int[] nums = new int[k];
for (int i = 0; i < k; ++i)
    nums[i] = i;
do
{
    Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));

你会得到这个(为了清晰起见,我添加了空行):

0 1 2

0 1 3
0 2 3
1 2 3

0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4

它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。

递归,一个很简单的答案,combo,在Free Pascal中。

    procedure combinata (n, k :integer; producer :oneintproc);

        procedure combo (ndx, nbr, len, lnd :integer);
        begin
            for nbr := nbr to len do begin
                productarray[ndx] := nbr;
                if len < lnd then
                    combo(ndx+1,nbr+1,len+1,lnd)
                else
                    producer(k);
            end;
        end;

    begin
        combo (0, 0, n-k, n-1);
    end;

“producer”处理为每个组合生成的产品数组。

这是一个为nCk生成组合的递归程序。假设集合中的元素从1到n

#include<stdio.h>
#include<stdlib.h>

int nCk(int n,int loopno,int ini,int *a,int k)
{
    static int count=0;
    int i;
    loopno--;
    if(loopno<0)
    {
        a[k-1]=ini;
        for(i=0;i<k;i++)
        {
            printf("%d,",a[i]);
        }
        printf("\n");
        count++;
        return 0;
    }
    for(i=ini;i<=n-loopno-1;i++)
    {
        a[k-1-loopno]=i+1;
        nCk(n,loopno,i+1,a,k);
    }
    if(ini==0)
    return count;
    else
    return 0;
}

void main()
{
    int n,k,*a,count;
    printf("Enter the value of n and k\n");
    scanf("%d %d",&n,&k);
    a=(int*)malloc(k*sizeof(int));
    count=nCk(n,k,0,a,k);
    printf("No of combinations=%d\n",count);
}
Array.prototype.combs = function(num) {

    var str = this,
        length = str.length,
        of = Math.pow(2, length) - 1,
        out, combinations = [];

    while(of) {

        out = [];

        for(var i = 0, y; i < length; i++) {

            y = (1 << i);

            if(y & of && (y !== of))
                out.push(str[i]);

        }

        if (out.length >= num) {
           combinations.push(out);
        }

        of--;
    }

    return combinations;
}

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。