我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
c#简单算法。 (我发布它是因为我试图使用你们上传的那个,但由于某种原因我无法编译它——扩展一个类?所以我自己写了一个,以防别人遇到和我一样的问题)。 顺便说一下,除了基本的编程,我对c#没什么兴趣,但是这个工作得很好。
public static List<List<int>> GetSubsetsOfSizeK(List<int> lInputSet, int k)
{
List<List<int>> lSubsets = new List<List<int>>();
GetSubsetsOfSizeK_rec(lInputSet, k, 0, new List<int>(), lSubsets);
return lSubsets;
}
public static void GetSubsetsOfSizeK_rec(List<int> lInputSet, int k, int i, List<int> lCurrSet, List<List<int>> lSubsets)
{
if (lCurrSet.Count == k)
{
lSubsets.Add(lCurrSet);
return;
}
if (i >= lInputSet.Count)
return;
List<int> lWith = new List<int>(lCurrSet);
List<int> lWithout = new List<int>(lCurrSet);
lWith.Add(lInputSet[i++]);
GetSubsetsOfSizeK_rec(lInputSet, k, i, lWith, lSubsets);
GetSubsetsOfSizeK_rec(lInputSet, k, i, lWithout, lSubsets);
}
GetSubsetsOfSizeK(set of type List<int>, integer k)
您可以修改它以遍历您正在处理的任何内容。
好运!
其他回答
这里你有一个用c#编写的该算法的惰性评估版本:
static bool nextCombination(int[] num, int n, int k)
{
bool finished, changed;
changed = finished = false;
if (k > 0)
{
for (int i = k - 1; !finished && !changed; i--)
{
if (num[i] < (n - 1) - (k - 1) + i)
{
num[i]++;
if (i < k - 1)
{
for (int j = i + 1; j < k; j++)
{
num[j] = num[j - 1] + 1;
}
}
changed = true;
}
finished = (i == 0);
}
}
return changed;
}
static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
{
T[] elem = elements.ToArray();
int size = elem.Length;
if (k <= size)
{
int[] numbers = new int[k];
for (int i = 0; i < k; i++)
{
numbers[i] = i;
}
do
{
yield return numbers.Select(n => elem[n]);
}
while (nextCombination(numbers, size, k));
}
}
及测试部分:
static void Main(string[] args)
{
int k = 3;
var t = new[] { "dog", "cat", "mouse", "zebra"};
foreach (IEnumerable<string> i in Combinations(t, k))
{
Console.WriteLine(string.Join(",", i));
}
}
希望这对你有帮助!
另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。
private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
return true;
if (num[k - 1] + 1 == n)
return false;
++num[k - 1];
for (int i = 0; i < k - 1; ++i)
num[i] = i;
return true;
}
例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
但如果你跑
int[] nums = new int[k];
for (int i = 0; i < k; ++i)
nums[i] = i;
do
{
Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));
你会得到这个(为了清晰起见,我添加了空行):
0 1 2
0 1 3
0 2 3
1 2 3
0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4
它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。
递归,一个很简单的答案,combo,在Free Pascal中。
procedure combinata (n, k :integer; producer :oneintproc);
procedure combo (ndx, nbr, len, lnd :integer);
begin
for nbr := nbr to len do begin
productarray[ndx] := nbr;
if len < lnd then
combo(ndx+1,nbr+1,len+1,lnd)
else
producer(k);
end;
end;
begin
combo (0, 0, n-k, n-1);
end;
“producer”处理为每个组合生成的产品数组。
假设你的字母数组是这样的:"ABCDEFGH"。你有三个下标(i, j, k)来表示你要用哪个字母来表示当前单词。
A B C D E F G H ^ ^ ^ i j k
首先你改变k,所以下一步看起来像这样:
A B C D E F G H ^ ^ ^ i j k
如果你到达终点,你继续改变j和k。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k
一旦j达到G, i也开始变化。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k ...
用代码写出来是这样的
void print_combinations(const char *string)
{
int i, j, k;
int len = strlen(string);
for (i = 0; i < len - 2; i++)
{
for (j = i + 1; j < len - 1; j++)
{
for (k = j + 1; k < len; k++)
printf("%c%c%c\n", string[i], string[j], string[k]);
}
}
}
Lisp宏为所有值r(每次取)生成代码
(defmacro txaat (some-list taken-at-a-time)
(let* ((vars (reverse (truncate-list '(a b c d e f g h i j) taken-at-a-time))))
`(
,@(loop for i below taken-at-a-time
for j in vars
with nested = nil
finally (return nested)
do
(setf
nested
`(loop for ,j from
,(if (< i (1- (length vars)))
`(1+ ,(nth (1+ i) vars))
0)
below (- (length ,some-list) ,i)
,@(if (equal i 0)
`(collect
(list
,@(loop for k from (1- taken-at-a-time) downto 0
append `((nth ,(nth k vars) ,some-list)))))
`(append ,nested))))))))
So,
CL-USER> (macroexpand-1 '(txaat '(a b c d) 1))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 2))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 2)
APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D)) (NTH B '(A B C D)))))
T
CL-USER> (macroexpand-1 '(txaat '(a b c d) 3))
(LOOP FOR A FROM 0 TO (- (LENGTH '(A B C D)) 3)
APPEND (LOOP FOR B FROM (1+ A) TO (- (LENGTH '(A B C D)) 2)
APPEND (LOOP FOR C FROM (1+ B) TO (- (LENGTH '(A B C D)) 1)
COLLECT (LIST (NTH A '(A B C D))
(NTH B '(A B C D))
(NTH C '(A B C D))))))
T
CL-USER>
And,
CL-USER> (txaat '(a b c d) 1)
((A) (B) (C) (D))
CL-USER> (txaat '(a b c d) 2)
((A B) (A C) (A D) (B C) (B D) (C D))
CL-USER> (txaat '(a b c d) 3)
((A B C) (A B D) (A C D) (B C D))
CL-USER> (txaat '(a b c d) 4)
((A B C D))
CL-USER> (txaat '(a b c d) 5)
NIL
CL-USER> (txaat '(a b c d) 0)
NIL
CL-USER>
为此,我在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
下面是一个例子来说明用法:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
结果:
Word
----
AB
AC
AD
BC
BD
CD
(6 row(s) affected)