我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是一个coffeescript实现

combinations: (list, n) ->
        permuations = Math.pow(2, list.length) - 1
        out = []
        combinations = []

        while permuations
            out = []

            for i in [0..list.length]
                y = ( 1 << i )
                if( y & permuations and (y isnt permuations))
                    out.push(list[i])

            if out.length <= n and out.length > 0
                combinations.push(out)

            permuations--

        return combinations 

其他回答

我在c++中为组合创建了一个通用类。 它是这样使用的。

char ar[] = "0ABCDEFGH";
nCr ncr(8, 3);
while(ncr.next()) {
    for(int i=0; i<ncr.size(); i++) cout << ar[ncr[i]];
    cout << ' ';
}

我的库ncr[i]从1返回,而不是从0返回。 这就是为什么数组中有0。 如果你想考虑订单,只需将nCr class改为nPr即可。 用法是相同的。

结果

美国广播公司 ABD 安倍 沛富 ABG ABH 澳洲牧牛犬 王牌 ACF ACG 呵呀 正面 ADF ADG 抗利尿激素 时 AEG AEH 二自由度陀螺仪 AFH 啊 BCD 公元前 供应量 波士顿咨询公司 BCH 12 快速公车提供 BDG BDH 性能试验 求 本· 高炉煤气 BFH 使用BGH CDE 提供 CDG 鼎晖 欧共体语言教学大纲的 CEG 另一 CFG CFH 全息 DEF 度 电气设施 脱硫 干扰 DGH EFG EFH EGH FGH

下面是头文件。

#pragma once
#include <exception>

class NRexception : public std::exception
{
public:
    virtual const char* what() const throw() {
        return "Combination : N, R should be positive integer!!";
    }
};

class Combination
{
public:
    Combination(int n, int r);
    virtual ~Combination() { delete [] ar;}
    int& operator[](unsigned i) {return ar[i];}
    bool next();
    int size() {return r;}
    static int factorial(int n);

protected:
    int* ar;
    int n, r;
};

class nCr : public Combination
{
public: 
    nCr(int n, int r);
    bool next();
    int count() const;
};

class nTr : public Combination
{
public:
    nTr(int n, int r);
    bool next();
    int count() const;
};

class nHr : public nTr
{
public:
    nHr(int n, int r) : nTr(n,r) {}
    bool next();
    int count() const;
};

class nPr : public Combination
{
public:
    nPr(int n, int r);
    virtual ~nPr() {delete [] on;}
    bool next();
    void rewind();
    int count() const;

private:
    bool* on;
    void inc_ar(int i);
};

以及执行。

#include "combi.h"
#include <set>
#include<cmath>

Combination::Combination(int n, int r)
{
    //if(n < 1 || r < 1) throw NRexception();
    ar = new int[r];
    this->n = n;
    this->r = r;
}

int Combination::factorial(int n) 
{
    return n == 1 ? n : n * factorial(n-1);
}

int nPr::count() const
{
    return factorial(n)/factorial(n-r);
}

int nCr::count() const
{
    return factorial(n)/factorial(n-r)/factorial(r);
}

int nTr::count() const
{
    return pow(n, r);
}

int nHr::count() const
{
    return factorial(n+r-1)/factorial(n-1)/factorial(r);
}

nCr::nCr(int n, int r) : Combination(n, r)
{
    if(r == 0) return;
    for(int i=0; i<r-1; i++) ar[i] = i + 1;
    ar[r-1] = r-1;
}

nTr::nTr(int n, int r) : Combination(n, r)
{
    for(int i=0; i<r-1; i++) ar[i] = 1;
    ar[r-1] = 0;
}

bool nCr::next()
{
    if(r == 0) return false;
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n-r+2+i) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++] + 1;
    return true;
}

bool nTr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        ar[i] = 1;
        if(--i == -1) return false;
        ar[i]++;
    }
    return true;
}

bool nHr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++];
    return true;
}

nPr::nPr(int n, int r) : Combination(n, r)
{
    on = new bool[n+2];
    for(int i=0; i<n+2; i++) on[i] = false;
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

void nPr::rewind()
{
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

bool nPr::next()
{   
    inc_ar(r-1);

    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        inc_ar(i);
    }
    while(i < r-1) {
        ar[++i] = 0;
        inc_ar(i);
    }
    return true;
}

void nPr::inc_ar(int i)
{
    on[ar[i]] = false;
    while(on[++ar[i]]);
    if(ar[i] != n+1) on[ar[i]] = true;
}
#include <stdio.h>

unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
    unsigned int finished = 0;
    unsigned int changed = 0;
    unsigned int i;

    if (k > 0) {
        for (i = k - 1; !finished && !changed; i--) {
            if (ar[i] < (n - 1) - (k - 1) + i) {
                /* Increment this element */
                ar[i]++;
                if (i < k - 1) {
                    /* Turn the elements after it into a linear sequence */
                    unsigned int j;
                    for (j = i + 1; j < k; j++) {
                        ar[j] = ar[j - 1] + 1;
                    }
                }
                changed = 1;
            }
            finished = i == 0;
        }
        if (!changed) {
            /* Reset to first combination */
            for (i = 0; i < k; i++) {
                ar[i] = i;
            }
        }
    }
    return changed;
}

typedef void(*printfn)(const void *, FILE *);

void print_set(const unsigned int *ar, size_t len, const void **elements,
    const char *brackets, printfn print, FILE *fptr)
{
    unsigned int i;
    fputc(brackets[0], fptr);
    for (i = 0; i < len; i++) {
        print(elements[ar[i]], fptr);
        if (i < len - 1) {
            fputs(", ", fptr);
        }
    }
    fputc(brackets[1], fptr);
}

int main(void)
{
    unsigned int numbers[] = { 0, 1, 2 };
    char *elements[] = { "a", "b", "c", "d", "e" };
    const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
    const unsigned int n = sizeof(elements) / sizeof(const char*);

    do {
        print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
        putchar('\n');
    } while (next_combination(numbers, n, k));
    getchar();
    return 0;
}

我可以给出这个问题的递归Python解决方案吗?

def choose_iter(elements, length):
    for i in xrange(len(elements)):
        if length == 1:
            yield (elements[i],)
        else:
            for next in choose_iter(elements[i+1:], length-1):
                yield (elements[i],) + next
def choose(l, k):
    return list(choose_iter(l, k))

使用示例:

>>> len(list(choose_iter("abcdefgh",3)))
56

我喜欢它的简洁。

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

短快C实现

#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
}

要查看它有多快,请使用这段代码并测试它

#include <time.h>
#include <stdio.h>

void main(int argc, char *argv[]) {
  const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
  const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
  int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */

  int c = 0; int i = 0;
  for (int j = 0; j <= n; j++) comb[j] = 0;
  while (i >= 0) {
    if (comb[i] < n + i - p + 1) {
       comb[i]++;
       /* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
       if (i == p - 1) c++;
       else            { comb[++i] = comb[i - 1]; }
    } else i--; }
  printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}

使用cmd.exe (windows)测试:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in          5.781 second(s)

c:\Program Files\lcc\projects>

祝你有愉快的一天。