我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
当前回答
function foo(num){
sortOld = num.toString().split("").sort().join('');
do{
num++;
sortNew = num.toString().split("").sort().join('');
}while(sortNew!==sortOld);
return num;
}
其他回答
int t,k,num3,num5;
scanf("%d",&t);
int num[t];
for(int i=0;i<t;i++){
scanf("%d",&num[i]);
}
for(int i=0;i<t;i++){
k=(((num[i]-1)/3)+1);
if(k<0)
printf("-1");
else if(num[i]<3 || num[i]==4 || num[i]==7)
printf("-1");
else{
num3=3*(2*num[i] - 5*k);
num5=5*(3*k -num[i]);
for(int j=0;j<num3;j++)
printf("5");
for(int j=0;j<num5;j++)
printf("3");
}
printf("\n");
}
PHP代码
function NextHigherNumber($num1){
$num = strval($num1);
$max = 0;
for($i=(strlen($num)-2); $i>=0; $i--){
$numArrayRaw = substr($num, $i);
$numArray = str_split($numArrayRaw);
$max = max($numArray);
if ($numArray[0] < $max){
sort( $numArray, SORT_NUMERIC );
array_pop($numArray);
$numarrstr = implode("",$numArray);
$rt = substr($num,0,$i) . $max . $numarrstr;
return $rt;
}
}
return "-1";
}
echo NextHigherNumber(123);
这是另一个Java实现,可以开箱即用,并通过测试完成。 这个解决方案是O(n)个空间和时间,使用老式的动态规划。
如果你想用蛮力,有两种蛮力:
排列所有的东西,然后选择最小值更高的:O(n!) 与此实现类似,但不是DP,而是强制填充的步骤 indexToIndexOfNextSmallerLeft映射将在O(n²)中运行。
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class NextHigherSameDigits {
public long next(final long num) {
final char[] chars = String.valueOf(num).toCharArray();
final int[] digits = new int[chars.length];
for (int i = 0; i < chars.length; i++) {
digits[i] = Character.getNumericValue(chars[i]);
}
final Map<Integer, Integer> indexToIndexOfNextSmallerLeft = new HashMap<>();
indexToIndexOfNextSmallerLeft.put(1, digits[1] > digits[0] ? 0 : null);
for (int i = 2; i < digits.length; i++) {
final int left = digits[i - 1];
final int current = digits[i];
Integer indexOfNextSmallerLeft = null;
if (current > left) {
indexOfNextSmallerLeft = i - 1;
} else {
final Integer indexOfnextSmallerLeftOfLeft = indexToIndexOfNextSmallerLeft.get(i - 1);
final Integer nextSmallerLeftOfLeft = indexOfnextSmallerLeftOfLeft == null ? null :
digits[indexOfnextSmallerLeftOfLeft];
if (nextSmallerLeftOfLeft != null && current > nextSmallerLeftOfLeft) {
indexOfNextSmallerLeft = indexOfnextSmallerLeftOfLeft;
} else {
indexOfNextSmallerLeft = null;
}
}
indexToIndexOfNextSmallerLeft.put(i, indexOfNextSmallerLeft);
}
Integer maxOfindexOfNextSmallerLeft = null;
Integer indexOfMinToSwapWithNextSmallerLeft = null;
for (int i = digits.length - 1; i >= 1; i--) {
final Integer indexOfNextSmallerLeft = indexToIndexOfNextSmallerLeft.get(i);
if (maxOfindexOfNextSmallerLeft == null ||
(indexOfNextSmallerLeft != null && indexOfNextSmallerLeft > maxOfindexOfNextSmallerLeft)) {
maxOfindexOfNextSmallerLeft = indexOfNextSmallerLeft;
if (maxOfindexOfNextSmallerLeft != null && (indexOfMinToSwapWithNextSmallerLeft == null ||
digits[i] < digits[indexOfMinToSwapWithNextSmallerLeft])) {
indexOfMinToSwapWithNextSmallerLeft = i;
}
}
}
if (maxOfindexOfNextSmallerLeft == null) {
return -1;
} else {
swap(digits, indexOfMinToSwapWithNextSmallerLeft, maxOfindexOfNextSmallerLeft);
reverseRemainingOfArray(digits, maxOfindexOfNextSmallerLeft + 1);
return backToLong(digits);
}
}
private void reverseRemainingOfArray(final int[] digits, final int startIndex) {
final int[] tail = Arrays.copyOfRange(digits, startIndex, digits.length);
for (int i = tail.length - 1; i >= 0; i--) {
digits[(digits.length - 1) - i] = tail[i];
}
}
private void swap(final int[] digits, final int currentIndex, final int indexOfNextSmallerLeft) {
int temp = digits[currentIndex];
digits[currentIndex] = digits[indexOfNextSmallerLeft];
digits[indexOfNextSmallerLeft] = temp;
}
private long backToLong(int[] digits) {
StringBuilder sb = new StringBuilder();
for (long i : digits) {
sb.append(String.valueOf(i));
}
return Long.parseLong(sb.toString());
}
@Test
public void test() {
final long input1 = 34722641;
final long expected1 = 34724126;
final long output1 = new NextHigherSameDigits().next(input1);
assertEquals(expected1, output1);
final long input2 = 38276;
final long expected2 = 38627;
final long output2 = new NextHigherSameDigits().next(input2);
assertEquals(expected2, output2);
final long input3 = 54321;
final long expected3 = -1;
final long output3 = new NextHigherSameDigits().next(input3);
assertEquals(expected3, output3);
final long input4 = 123456784987654321L;
final long expected4 = 123456785123446789L;
final long output4 = new NextHigherSameDigits().next(input4);
assertEquals(expected4, output4);
final long input5 = 9999;
final long expected5 = -1;
final long output5 = new NextHigherSameDigits().next(input5);
assertEquals(expected5, output5);
}
}
这里有一个我在c#中没有想到的聪明的解决方案
using System;
using System.Linq;
public static long NextBiggerNumber(long n)
{
String str = GetNumbers(n);
for (long i = n+1; i <= long.Parse(str); i++)
{
if(GetNumbers(n)==GetNumbers(i))
{
return i;
}
}
return -1;
}
public static string GetNumbers(long number)
{
return string.Join("", number.ToString().ToCharArray().OrderByDescending(x => x));
}
PHP实现
时间复杂度O(n)
$n = "9875";
$n_size = strlen($n);
for($i = $n_size-1; $i > 0; $i-- ) {
if($n[$i] > $n[$i-1]){
$temp = $n[$i];
$n[$i] = $n[$i-1];
$n[$i-1] = $temp;
break;
}
}
if($i == 0){
echo "Next Greater value no possible";
}else{
echo $n;
}