Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

我知道这是一个老帖子,但我只是把我的解决方案留在这里以防万一。

def decimal_to_given_base(integer_to_convert, base):
     remainder = integer_to_convert // base
     digit = integer_to_convert % base
     if integer_to_convert == 0:
         return '0'
     elif remainder == 0:
         return str(digit)
     else:
         return decimal_to_given_base(remainder, base) + str(digit)

其他回答

我写了这个函数,我用它来编码不同的碱基。我还提供了通过值“offset”来移动结果的方法。如果你想编码到64进制以上,但保持可显示字符(如95进制),这是有用的。

我还试图避免反转输出“列表”,并尽量减少计算操作。pow(base)数组是根据需要计算的,并保留用于对函数的其他调用。

输出是一个二进制字符串

pows = {}

######################################################
def encode_base(value,
                base = 10,
                offset = 0) :

    """
    Encode value into a binary string, according to the desired base.

    Input :
        value : Any positive integer value
        offset : Shift the encoding (eg : Starting at chr(32))
        base : The base in which we'd like to encode the value

    Return : Binary string

    Example : with : offset = 32, base = 64

              100 -> !D
              200 -> #(
    """

    # Determine the number of loops
    try :
        pb = pows[base]

    except KeyError :
        pb = pows[base] = {n : base ** n for n in range(0, 8) if n < 2 ** 48 -1}

    for n in pb :
        if value < pb[n] :
            n -= 1
            break

    out = []
    while n + 1 :
        b = pb[n]
        out.append(chr(offset + value // b))
        n -= 1
        value %= b

    return ''.join(out).encode()

我知道这是一个老帖子,但我只是把我的解决方案留在这里以防万一。

def decimal_to_given_base(integer_to_convert, base):
     remainder = integer_to_convert // base
     digit = integer_to_convert % base
     if integer_to_convert == 0:
         return '0'
     elif remainder == 0:
         return str(digit)
     else:
         return decimal_to_given_base(remainder, base) + str(digit)

字符串不是表示数字的唯一选择:您可以使用一个整数列表来表示每个数字的顺序。这些可以很容易地转换为字符串。

没有一个答案拒绝底数< 2;对于非常大的数字(如56789 ** 43210),大多数将运行非常缓慢或因堆栈溢出而崩溃。为了避免这种失败,可以像这样快速减少:

def n_to_base(n, b):
    if b < 2: raise # invalid base
    if abs(n) < b: return [n]
    ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
    return ret[1:] if ret[0] == 0 else ret # remove leading zeros

def base_to_n(v, b):
    h = len(v) // 2
    if h == 0: return v[0]
    return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)

assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)

在速度方面,n_to_base对于较大的数字(在我的机器上约为0.3秒)与str相当,但如果与十六进制进行比较,您可能会感到惊讶(在我的机器上约为0.3毫秒,或快1000倍)。这是因为大整数以256(字节)为基数存储在内存中。每个字节可以简单地转换为两个字符的十六进制字符串。这种对齐只发生在底数为2的幂的情况下,这就是为什么有2、8和16(以及base64, ascii, utf16, utf32)的特殊情况。

Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.

def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    baseit = lambda a=a, b=base: (not a) and numerals[0]  or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
    return baseit()

解释

在任何底数下,每个数字都等于a1+a2*base**2+a3*base**3…“任务”是找出所有的a。

everyN = 1、2、3……代码通过b对b=base**(N+1)进行“模组”来隔离aN*base**N, b=base**(N+1)切片所有大于N的a,并通过每次由当前aN*base**N调用func时减少a来切片它们的序列小于N的所有a。

底%(底-1)==1,则底**p%(底-1)==1,而底q*底^p%(底-1)==q,只有当q=底-1时例外,返回0。 为了解决这个问题,如果它返回0,func会检查它从原点开始是否是0。


优势

在这个例子中,只有一个乘法(而不是除法)和一些模量运算,这些运算相对花费的时间较少。

很棒的答案! 我想我问题的答案是“不”,我并没有错过一些明显的解决方案。 下面是我将使用的函数,它可以浓缩答案中所表达的好想法。

允许调用者提供的字符映射(允许base64编码) 检查负数和零 将复数映射为字符串元组

def int2base(x,b,alphabet='0123456789abcdefghijklmnopqrstuvwxyz'): 'convert an integer to its string representation in a given base' if b<2 or b>len(alphabet): if b==64: # assume base64 rather than raise error alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" else: raise AssertionError("int2base base out of range") if isinstance(x,complex): # return a tuple return ( int2base(x.real,b,alphabet) , int2base(x.imag,b,alphabet) ) if x<=0: if x==0: return alphabet[0] else: return '-' + int2base(-x,b,alphabet) # else x is non-negative real rets='' while x>0: x,idx = divmod(x,b) rets = alphabet[idx] + rets return rets