Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

def baseN(num,b,numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    return ((num == 0) and numerals[0]) or (baseN(num // b, b, numerals).lstrip(numerals[0]) + numerals[num % b])

裁判: http://code.activestate.com/recipes/65212/

请注意这可能会导致

RuntimeError: maximum recursion depth exceeded in cmp

对于非常大的整数。

其他回答

def base_changer(number,base):
    buff=97+abs(base-10)
    dic={};buff2='';buff3=10
    for i in range(97,buff+1):
        dic[buff3]=chr(i)
        buff3+=1   
    while(number>=base):
        mod=int(number%base)
        number=int(number//base)
        if (mod) in dic.keys():
            buff2+=dic[mod]
            continue
        buff2+=str(mod)
    if (number) in dic.keys():
        buff2+=dic[number]
    else:
        buff2+=str(number)

    return buff2[::-1]   

假设我们想把14转换成2进制。我们反复应用除法算法,直到商为0:

14 = 2 × 7

7 = 2 × 3 + 1

3 = 2 × 1 + 1

1 = 2 × 0 + 1

二进制表示就是从下往上读的余数。这可以通过展开来证明

14 = 2 × 7 = 2 × (2 × 3 + 1) = 2 × (2 × (2 × 1 + 1) + 1) = 2 × (2 × (2 × 0 + 1) + 1) = 2^3 + 2^2 + 2

本代码是上述算法的实现。

def toBaseX(n, X):
strbin = ""
while n != 0:
    strbin += str(n % X)
    n = n // X
return strbin[::-1]
def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    baseit = lambda a=a, b=base: (not a) and numerals[0]  or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
    return baseit()

解释

在任何底数下,每个数字都等于a1+a2*base**2+a3*base**3…“任务”是找出所有的a。

everyN = 1、2、3……代码通过b对b=base**(N+1)进行“模组”来隔离aN*base**N, b=base**(N+1)切片所有大于N的a,并通过每次由当前aN*base**N调用func时减少a来切片它们的序列小于N的所有a。

底%(底-1)==1,则底**p%(底-1)==1,而底q*底^p%(底-1)==q,只有当q=底-1时例外,返回0。 为了解决这个问题,如果它返回0,func会检查它从原点开始是否是0。


优势

在这个例子中,只有一个乘法(而不是除法)和一些模量运算,这些运算相对花费的时间较少。

简单基底变换

def int_to_str(x, b):
    s = ""
    while x:
        s = str(x % b) + s
        x //= b
    return s

输出的例子,没有0到基数9

s = ""
x = int(input())
while x:
    if x % 9 == 0:
        s = "9" + s
        x -= x % 10
        x = x // 9
    else:
        s = str(x % 9) + s
        x = x // 9

print(s)

下面是一个如何将任意基数转换为另一个基数的示例。

from collections import namedtuple

Test = namedtuple("Test", ["n", "from_base", "to_base", "expected"])


def convert(n: int, from_base: int, to_base: int) -> int:
    digits = []
    while n:
        (n, r) = divmod(n, to_base)
        digits.append(r)    
    return sum(from_base ** i * v for i, v in enumerate(digits))


if __name__ == "__main__":
    tests = [
        Test(32, 16, 10, 50),
        Test(32, 20, 10, 62),
        Test(1010, 2, 10, 10),
        Test(8, 10, 8, 10),
        Test(150, 100, 1000, 150),
        Test(1500, 100, 10, 1050000),
    ]

    for test in tests:
        result = convert(*test[:-1])
        assert result == test.expected, f"{test=}, {result=}"
    print("PASSED!!!")