Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

这个函数将任意整数从任意进制转换为任意进制

def baseconvert(number, srcbase, destbase):
    if srcbase != 10:
        sum = 0
        for _ in range(len(str(number))):
            sum += int(str(number)[_]) * pow(srcbase, len(str(number)) - _ - 1)
        b10 = sum
        return baseconvert(b10, 10, destbase)
    end = ''
    q = number
    while(True):
        r = q % destbase
        q = q // destbase
        end = str(r) + end
        if(q<destbase):
            end = str(q) + end
            return int(end)

其他回答

另一个简短的(在我看来更容易理解):

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    return (int_to_str(n/b, b, symbols) if n >= b else "") + symbols[n%b]

通过适当的异常处理:

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    try:
        return (int_to_str(n/b, b) if n >= b else "") + symbols[n%b]
    except IndexError:
        raise ValueError(
            "The symbols provided are not enough to represent this number in "
            "this base")

虽然目前排名第一的答案绝对是一个很棒的解决方案,但仍然有更多用户可能喜欢的定制。

Basencode添加了其中的一些特性,包括浮点数的转换、修改数字(在链接的答案中,只能使用数字)。

下面是一个可能的用例:

>>> from basencode import *
>>> n1 = Number(12345)
>> n1.repr_in_base(64) # convert to base 64
'30V'
>>> Number('30V', 64) # construct Integer from base 64
Integer(12345)
>>> n1.repr_in_base(8)
'30071'
>>> n1.repr_in_octal() # shortcuts
'30071'
>>> n1.repr_in_bin() # equivelant to `n1.repr_in_base(2)`
'11000000111001'
>>> n1.repr_in_base(2, digits=list('-+')) # override default digits: use `-` and `+` in place of `0` and `1`
'++------+++--+'
>>> n1.repr_in_base(33) # yet another base - all bases from 2 to 64 are supported from the start
'bb3'

你怎么添加你想要的碱基?让我复制一下目前投票最多的答案的例子:digits参数允许您覆盖从2到64的默认数字,并为任何高于该基数的数字提供数字。mode参数决定了表示的值如何决定(列表或字符串)如何返回答案。

>>> n2 = Number(67854 ** 15 - 102)
>>> n2.repr_in_base(577, digits=[str(i) for i in range(577)], mode="l")
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']
>>> n2.repr_in_base(577, mode="l") # the program remembers the digits for base 577 now
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']

可以执行以下操作:Number类返回basencode的一个实例。如果提供的数字是Integer,则返回一个基本编码。浮动

>>> n3 = Number(54321) # the Number class returns an instance of `basencode.Integer` if the provided number is an Integer, otherwise it returns a `basencode.Float`.
>>> n1 + n3
Integer(66666)
>>> n3 - n1
Integer(41976)
>>> n1 * n3
Integer(670592745)
>>> n3 // n1
Integer(4)
>>> n3 / n1 # a basencode.Float class allows conversion of floating point numbers
Float(4.400243013365735)
>>> (n3 / n1).repr_in_base(32)
'4.cpr56v6rnc4oitoblha2r11sus0dheqd4pgechfcjklo74b2bgom7j8ih86mipdvss0068sehi9f3791mdo4uotfujq66cf0jkgo'
>>> n4 = Number(0.5) # returns a basencode.Float
>>> n4.repr_in_bin() # binary version of 0.5
'0.1'

免责声明:此项目正在积极维护中,我是贡献者。

我为此做了一个小包裹。

我建议你使用我的bases.py https://github.com/kamijoutouma/bases.py,它的灵感来自于bases.js

from bases import Bases
bases = Bases()

bases.toBase16(200)                // => 'c8'
bases.toBase(200, 16)              // => 'c8'
bases.toBase62(99999)              // => 'q0T'
bases.toBase(200, 62)              // => 'q0T'
bases.toAlphabet(300, 'aAbBcC')    // => 'Abba'

bases.fromBase16('c8')               // => 200
bases.fromBase('c8', 16)             // => 200
bases.fromBase62('q0T')              // => 99999
bases.fromBase('q0T', 62)            // => 99999
bases.fromAlphabet('Abba', 'aAbBcC') // => 300

参考https://github.com/kamijoutouma/bases.py#known-basesalphabets 哪些基是可用的

编辑: PIP link https://pypi.python.org/pypi/bases.py/0.2.2

def baseConverter(x, b):
    s = ""
    d = string.printable.upper()
    while x > 0:
        s += d[x%b]
        x = x / b
    return s[::-1]

令人惊讶的是,人们给出的答案只能转换成小基数(比英语字母表的长度还小)。没有人试图给出一个可以转换为2到无穷任意底数的解。

这里有一个超级简单的解决方案:

def numberToBase(n, b):
    if n == 0:
        return [0]
    digits = []
    while n:
        digits.append(int(n % b))
        n //= b
    return digits[::-1]

所以如果你需要把一个超级大的数转换成577的底数,

numberToBase(67854 ** 15 - 102,577),将为您提供正确的解决方案: [4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],

你以后可以把它转换成任何你想要的基数

at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577. this is due to lack of understanding what a number in some base means. I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.