Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

假设我们想把14转换成2进制。我们反复应用除法算法,直到商为0:

14 = 2 × 7

7 = 2 × 3 + 1

3 = 2 × 1 + 1

1 = 2 × 0 + 1

二进制表示就是从下往上读的余数。这可以通过展开来证明

14 = 2 × 7 = 2 × (2 × 3 + 1) = 2 × (2 × (2 × 1 + 1) + 1) = 2 × (2 × (2 × 0 + 1) + 1) = 2^3 + 2^2 + 2

本代码是上述算法的实现。

def toBaseX(n, X):
strbin = ""
while n != 0:
    strbin += str(n % X)
    n = n // X
return strbin[::-1]

其他回答

假设我们想把14转换成2进制。我们反复应用除法算法,直到商为0:

14 = 2 × 7

7 = 2 × 3 + 1

3 = 2 × 1 + 1

1 = 2 × 0 + 1

二进制表示就是从下往上读的余数。这可以通过展开来证明

14 = 2 × 7 = 2 × (2 × 3 + 1) = 2 × (2 × (2 × 1 + 1) + 1) = 2 × (2 × (2 × 0 + 1) + 1) = 2^3 + 2^2 + 2

本代码是上述算法的实现。

def toBaseX(n, X):
strbin = ""
while n != 0:
    strbin += str(n % X)
    n = n // X
return strbin[::-1]

您可以使用我的项目中的baseconv.py: https://github.com/semente/python-baseconv

示例用法:

>>> from baseconv import BaseConverter
>>> base20 = BaseConverter('0123456789abcdefghij')
>>> base20.encode(1234)
'31e'
>>> base20.decode('31e')
'1234'
>>> base20.encode(-1234)
'-31e'
>>> base20.decode('-31e')
'-1234'
>>> base11 = BaseConverter('0123456789-', sign='$')
>>> base11.encode('$1234')
'$-22'
>>> base11.decode('$-22')
'$1234'

有一些bultin转换器,例如baseconv。base2 baseconv。Base16和baseconv.base64。

字符串不是表示数字的唯一选择:您可以使用一个整数列表来表示每个数字的顺序。这些可以很容易地转换为字符串。

没有一个答案拒绝底数< 2;对于非常大的数字(如56789 ** 43210),大多数将运行非常缓慢或因堆栈溢出而崩溃。为了避免这种失败,可以像这样快速减少:

def n_to_base(n, b):
    if b < 2: raise # invalid base
    if abs(n) < b: return [n]
    ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
    return ret[1:] if ret[0] == 0 else ret # remove leading zeros

def base_to_n(v, b):
    h = len(v) // 2
    if h == 0: return v[0]
    return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)

assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)

在速度方面,n_to_base对于较大的数字(在我的机器上约为0.3秒)与str相当,但如果与十六进制进行比较,您可能会感到惊讶(在我的机器上约为0.3毫秒,或快1000倍)。这是因为大整数以256(字节)为基数存储在内存中。每个字节可以简单地转换为两个字符的十六进制字符串。这种对齐只发生在底数为2的幂的情况下,这就是为什么有2、8和16(以及base64, ascii, utf16, utf32)的特殊情况。

Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.

def baseConverter(x, b):
    s = ""
    d = string.printable.upper()
    while x > 0:
        s += d[x%b]
        x = x / b
    return s[::-1]

下面是一个如何将任意基数转换为另一个基数的示例。

from collections import namedtuple

Test = namedtuple("Test", ["n", "from_base", "to_base", "expected"])


def convert(n: int, from_base: int, to_base: int) -> int:
    digits = []
    while n:
        (n, r) = divmod(n, to_base)
        digits.append(r)    
    return sum(from_base ** i * v for i, v in enumerate(digits))


if __name__ == "__main__":
    tests = [
        Test(32, 16, 10, 50),
        Test(32, 20, 10, 62),
        Test(1010, 2, 10, 10),
        Test(8, 10, 8, 10),
        Test(150, 100, 1000, 150),
        Test(1500, 100, 10, 1050000),
    ]

    for test in tests:
        result = convert(*test[:-1])
        assert result == test.expected, f"{test=}, {result=}"
    print("PASSED!!!")