Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

另一个简短的(在我看来更容易理解):

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    return (int_to_str(n/b, b, symbols) if n >= b else "") + symbols[n%b]

通过适当的异常处理:

def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
    try:
        return (int_to_str(n/b, b) if n >= b else "") + symbols[n%b]
    except IndexError:
        raise ValueError(
            "The symbols provided are not enough to represent this number in "
            "this base")

其他回答

>>> import string
>>> def int2base(integer, base):
        if not integer: return '0'
        sign = 1 if integer > 0 else -1
        alphanum = string.digits + string.ascii_lowercase
        nums = alphanum[:base]
        res = ''
        integer *= sign
        while integer:
                integer, mod = divmod(integer, base)
                res += nums[mod]
        return ('' if sign == 1 else '-') + res[::-1]


>>> int2base(-15645, 23)
'-16d5'
>>> int2base(213, 21)
'a3'

一个递归的解决方案。当然,这对负二进制值不起作用。您需要实现Two's Complement。

def generateBase36Alphabet():
    return ''.join([str(i) for i in range(10)]+[chr(i+65) for i in range(26)])

def generateAlphabet(base):
    return generateBase36Alphabet()[:base]

def intToStr(n, base, alphabet):
    def toStr(n, base, alphabet):
        return alphabet[n] if n < base else toStr(n//base,base,alphabet) + alphabet[n%base]
    return ('-' if n < 0 else '') + toStr(abs(n), base, alphabet)

print('{} -> {}'.format(-31, intToStr(-31, 16, generateAlphabet(16)))) # -31 -> -1F
"{0:b}".format(100) # bin: 1100100
"{0:x}".format(100) # hex: 64
"{0:o}".format(100) # oct: 144
def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    baseit = lambda a=a, b=base: (not a) and numerals[0]  or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
    return baseit()

解释

在任何底数下,每个数字都等于a1+a2*base**2+a3*base**3…“任务”是找出所有的a。

everyN = 1、2、3……代码通过b对b=base**(N+1)进行“模组”来隔离aN*base**N, b=base**(N+1)切片所有大于N的a,并通过每次由当前aN*base**N调用func时减少a来切片它们的序列小于N的所有a。

底%(底-1)==1,则底**p%(底-1)==1,而底q*底^p%(底-1)==q,只有当q=底-1时例外,返回0。 为了解决这个问题,如果它返回0,func会检查它从原点开始是否是0。


优势

在这个例子中,只有一个乘法(而不是除法)和一些模量运算,这些运算相对花费的时间较少。

我提出了一个“非优化”的2到9基的解决方案:

  def to_base(N, base=2):
    N_in_base = ''
    while True:
        N_in_base = str(N % base) + N_in_base
        N //= base
        if N == 0:
            break
    return N_in_base

这个解决方案不需要反转最终结果,但实际上并没有优化。请参考以下答案了解原因:https://stackoverflow.com/a/37133870/7896998