Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

字符串不是表示数字的唯一选择:您可以使用一个整数列表来表示每个数字的顺序。这些可以很容易地转换为字符串。

没有一个答案拒绝底数< 2;对于非常大的数字(如56789 ** 43210),大多数将运行非常缓慢或因堆栈溢出而崩溃。为了避免这种失败,可以像这样快速减少:

def n_to_base(n, b):
    if b < 2: raise # invalid base
    if abs(n) < b: return [n]
    ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
    return ret[1:] if ret[0] == 0 else ret # remove leading zeros

def base_to_n(v, b):
    h = len(v) // 2
    if h == 0: return v[0]
    return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)

assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)

在速度方面,n_to_base对于较大的数字(在我的机器上约为0.3秒)与str相当,但如果与十六进制进行比较,您可能会感到惊讶(在我的机器上约为0.3毫秒,或快1000倍)。这是因为大整数以256(字节)为基数存储在内存中。每个字节可以简单地转换为两个字符的十六进制字符串。这种对齐只发生在底数为2的幂的情况下,这就是为什么有2、8和16(以及base64, ascii, utf16, utf32)的特殊情况。

Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.

其他回答

如果你需要兼容Python的古老版本,你可以使用gmpy(它包含一个快速的,完全通用的int-to-string转换函数,可以为这样的古老版本构建-你可能需要尝试更老的版本,因为最近的版本还没有针对古老的Python和GMP版本进行测试,只有一些最近的版本),或者,为了速度较慢但更方便,使用Python代码-例如,对于Python 2,最简单的方法是:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[int(x % base)])
        x = int(x / base)

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)

对于Python 3, int(x / base)会导致不正确的结果,必须将其更改为x // base:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[x % base])
        x = x // base

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)

我让函数这样做。在windows 10, python 3.7.3上运行良好。

def number_to_base(number, base, precision = 10):
    if number == 0:
        return [0]
    
    positive = number >= 0
    number = abs(number)
    
    ints = []  # store the integer bases
    floats = []  # store the floating bases

    float_point = number % 1
    number = int(number)
    while number:
        ints.append(int(number%base))
        number //= base
    ints.reverse()
    
    while float_point and precision:
        precision -= 1
        float_point *= base
        floats.append(int(float_point))
        float_point = float_point - int(float_point)

    return ints, floats, positive


def base_to_str(bases, string="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"):
    """bases is a two dimension list, where bases[0] contains a list of the integers,
    and bases[1] contains a list of the floating numbers, bases[2] is a boolean, that's
    true when it's a positive number
    """
    ints = []
    floats = []

    for i in bases[0]:
        ints.append(string[i])

    for i in bases[1]:
        floats.append(string[i])

    if len(bases[1]) > 0:
        return (["-", ""][bases[2]] + "".join(ints)) + "." + ("".join(floats))
    else:
        return (["-", ""][bases[2]] + "".join(ints))
    

    

例子:

>>> base_to_str(number_to_base(-6.252, 2))
'-110.0100000010'

我知道这是一个老帖子,但我只是把我的解决方案留在这里以防万一。

def decimal_to_given_base(integer_to_convert, base):
     remainder = integer_to_convert // base
     digit = integer_to_convert % base
     if integer_to_convert == 0:
         return '0'
     elif remainder == 0:
         return str(digit)
     else:
         return decimal_to_given_base(remainder, base) + str(digit)
def dec_to_radix(input, to_radix=2, power=None):
    if not isinstance(input, int):
        raise TypeError('Not an integer!')
    elif power is None:
        power = 1

    if input == 0:
        return 0
    else:
        remainder = input % to_radix**power
        digit = str(int(remainder/to_radix**(power-1)))
        return int(str(dec_to_radix(input-remainder, to_radix, power+1)) + digit)

def radix_to_dec(input, from_radix):
    if not isinstance(input, int):
        raise TypeError('Not an integer!')
    return sum(int(digit)*(from_radix**power) for power, digit in enumerate(str(input)[::-1]))

def radix_to_radix(input, from_radix=10, to_radix=2, power=None):
    dec = radix_to_dec(input, from_radix)
    return dec_to_radix(dec, to_radix, power)

虽然目前排名第一的答案绝对是一个很棒的解决方案,但仍然有更多用户可能喜欢的定制。

Basencode添加了其中的一些特性,包括浮点数的转换、修改数字(在链接的答案中,只能使用数字)。

下面是一个可能的用例:

>>> from basencode import *
>>> n1 = Number(12345)
>> n1.repr_in_base(64) # convert to base 64
'30V'
>>> Number('30V', 64) # construct Integer from base 64
Integer(12345)
>>> n1.repr_in_base(8)
'30071'
>>> n1.repr_in_octal() # shortcuts
'30071'
>>> n1.repr_in_bin() # equivelant to `n1.repr_in_base(2)`
'11000000111001'
>>> n1.repr_in_base(2, digits=list('-+')) # override default digits: use `-` and `+` in place of `0` and `1`
'++------+++--+'
>>> n1.repr_in_base(33) # yet another base - all bases from 2 to 64 are supported from the start
'bb3'

你怎么添加你想要的碱基?让我复制一下目前投票最多的答案的例子:digits参数允许您覆盖从2到64的默认数字,并为任何高于该基数的数字提供数字。mode参数决定了表示的值如何决定(列表或字符串)如何返回答案。

>>> n2 = Number(67854 ** 15 - 102)
>>> n2.repr_in_base(577, digits=[str(i) for i in range(577)], mode="l")
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']
>>> n2.repr_in_base(577, mode="l") # the program remembers the digits for base 577 now
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']

可以执行以下操作:Number类返回basencode的一个实例。如果提供的数字是Integer,则返回一个基本编码。浮动

>>> n3 = Number(54321) # the Number class returns an instance of `basencode.Integer` if the provided number is an Integer, otherwise it returns a `basencode.Float`.
>>> n1 + n3
Integer(66666)
>>> n3 - n1
Integer(41976)
>>> n1 * n3
Integer(670592745)
>>> n3 // n1
Integer(4)
>>> n3 / n1 # a basencode.Float class allows conversion of floating point numbers
Float(4.400243013365735)
>>> (n3 / n1).repr_in_base(32)
'4.cpr56v6rnc4oitoblha2r11sus0dheqd4pgechfcjklo74b2bgom7j8ih86mipdvss0068sehi9f3791mdo4uotfujq66cf0jkgo'
>>> n4 = Number(0.5) # returns a basencode.Float
>>> n4.repr_in_bin() # binary version of 0.5
'0.1'

免责声明:此项目正在积极维护中,我是贡献者。