Python允许从给定基数的字符串中轻松创建一个整数
int(str, base).
我想执行相反的操作:从一个整数创建一个字符串,
例如,我想要一些函数int2base(num, base),这样:
int(int2base(x, b), b) == x
函数名/参数的顺序并不重要。
对于int()将接受的任何以b为底的数字x。
这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。
我知道函数bin, oct, hex,但我不能使用它们的几个原因:
这些函数在旧版本的Python中不可用,我需要与(2.2)兼容
我想要一个通解对于不同的碱都可以用同样的方式表示
我想允许2 8 16以外的底数
相关的
Python优雅的int(string, base)逆函数
在python中使用递归的整数到base-x系统
Python中的Base 62转换
如何在Python中将整数转换为最短的url安全字符串?
字符串不是表示数字的唯一选择:您可以使用一个整数列表来表示每个数字的顺序。这些可以很容易地转换为字符串。
没有一个答案拒绝底数< 2;对于非常大的数字(如56789 ** 43210),大多数将运行非常缓慢或因堆栈溢出而崩溃。为了避免这种失败,可以像这样快速减少:
def n_to_base(n, b):
if b < 2: raise # invalid base
if abs(n) < b: return [n]
ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
return ret[1:] if ret[0] == 0 else ret # remove leading zeros
def base_to_n(v, b):
h = len(v) // 2
if h == 0: return v[0]
return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)
assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)
在速度方面,n_to_base对于较大的数字(在我的机器上约为0.3秒)与str相当,但如果与十六进制进行比较,您可能会感到惊讶(在我的机器上约为0.3毫秒,或快1000倍)。这是因为大整数以256(字节)为基数存储在内存中。每个字节可以简单地转换为两个字符的十六进制字符串。这种对齐只发生在底数为2的幂的情况下,这就是为什么有2、8和16(以及base64, ascii, utf16, utf32)的特殊情况。
Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.
令人惊讶的是,人们给出的答案只能转换成小基数(比英语字母表的长度还小)。没有人试图给出一个可以转换为2到无穷任意底数的解。
这里有一个超级简单的解决方案:
def numberToBase(n, b):
if n == 0:
return [0]
digits = []
while n:
digits.append(int(n % b))
n //= b
return digits[::-1]
所以如果你需要把一个超级大的数转换成577的底数,
numberToBase(67854 ** 15 - 102,577),将为您提供正确的解决方案:
[4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],
你以后可以把它转换成任何你想要的基数
at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577.
this is due to lack of understanding what a number in some base means.
I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.