我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
要根据其他列的名称将现有列设置为右侧/左侧,请执行以下操作:
def df_move_column(df, col_to_move, col_left_of_destiny="", right_of_col_bool=True):
cols = list(df.columns.values)
index_max = len(cols) - 1
if not right_of_col_bool:
# set left of a column "c", is like putting right of column previous to "c"
# ... except if left of 1st column, then recursive call to set rest right to it
aux = cols.index(col_left_of_destiny)
if not aux:
for g in [x for x in cols[::-1] if x != col_to_move]:
df = df_move_column(
df,
col_to_move=g,
col_left_of_destiny=col_to_move
)
return df
col_left_of_destiny = cols[aux - 1]
index_old = cols.index(col_to_move)
index_new = 0
if len(col_left_of_destiny):
index_new = cols.index(col_left_of_destiny) + 1
if index_old == index_new:
return df
if index_new < index_old:
index_new = np.min([index_new, index_max])
cols = (
cols[:index_new]
+ [cols[index_old]]
+ cols[index_new:index_old]
+ cols[index_old + 1 :]
)
else:
cols = (
cols[:index_old]
+ cols[index_old + 1 : index_new]
+ [cols[index_old]]
+ cols[index_new:]
)
df = df[cols]
return df
E.g.
cols = list("ABCD")
df2 = pd.DataFrame(np.arange(4)[np.newaxis, :], columns=cols)
for k in cols:
print(30 * "-")
for g in [x for x in cols if x != k]:
df_new = df_move_column(df2, k, g)
print(f"{k} after {g}: {df_new.columns.values}")
for k in cols:
print(30 * "-")
for g in [x for x in cols if x != k]:
df_new = df_move_column(df2, k, g, right_of_col_bool=False)
print(f"{k} before {g}: {df_new.columns.values}")
输出:
其他回答
熊猫>=1.3(2022年编辑):
df.insert(0, 'mean', df.pop('mean'))
怎么样(对于熊猫<1.3,原始答案)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除
您可以使用以下名称列表对数据帧列进行重新排序:
df=df.filter(list_of_col_name)
对我来说,一个非常简单的解决方案是在df.columns上使用.rendex:
df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]
使用T怎么样?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})