我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
熊猫>=1.3(2022年编辑):
df.insert(0, 'mean', df.pop('mean'))
怎么样(对于熊猫<1.3,原始答案)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除
其他回答
这里有一个非常简单的答案(只有一行)。
在将“n”列添加到df中之后,可以执行以下操作。
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
0 1 2 3 4 mean
0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439
1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143
2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512
3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347
4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551
5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463
6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473
7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587
8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736
9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752
### here you can add below line and it should work
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.
df = df[list(('mean',0, 1, 2,3,4))]
df
mean 0 1 2 3 4
0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725
1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570
2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704
3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685
4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645
5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914
6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747
7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266
8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950
9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053
您可以使用以下名称列表对数据帧列进行重新排序:
df=df.filter(list_of_col_name)
我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:
def reorder_df_columns(df, start=None, end=None):
"""
This function reorder columns of a DataFrame.
It takes columns given in the list `start` and move them to the left.
Its also takes columns in `end` and move them to the right.
"""
if start is None:
start = []
if end is None:
end = []
assert isinstance(start, list) and isinstance(end, list)
cols = list(df.columns)
for c in start:
if c not in cols:
start.remove(c)
for c in end:
if c not in cols or c in start:
end.remove(c)
for c in start + end:
cols.remove(c)
cols = start + cols + end
return df[cols]
熊猫>=1.3(2022年编辑):
df.insert(0, 'mean', df.pop('mean'))
怎么样(对于熊猫<1.3,原始答案)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除
这里有一种移动一个现有列的方法,它将修改现有的数据帧。
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place