我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

熊猫>=1.3(2022年编辑):

df.insert(0, 'mean', df.pop('mean'))

怎么样(对于熊猫<1.3,原始答案)

df.insert(0, 'mean', df['mean'])

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-选择添加删除

其他回答

书中最黑客的方法

df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})

DataFrame.sort_index(axis=1)非常干净。请在此处检查文档。然后凹入

大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。

def order_column(df, columns, big_data = False):

    """Re-Orders dataFrame column(s)
       Parameters : 
       df      -- dataframe
       columns -- a dictionary:
                  key   = current column position/index or column name
                  value = position to move it to  
       big_data -- boolean 
                  True = returns only the ordered columns as a list
                          the user user can then slice the data using this
                          ordered column
                  False = default - return a copy of the dataframe
    """
    ordered_col = df.columns.tolist()

    for key, value in columns.items():

        ordered_col.remove(key)
        ordered_col.insert(value, key)

    if big_data:

        return ordered_col

    return df[ordered_col]

# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
                          'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)

df = order_column(df, {'mean': 0, 'coffee':1 })

>>>

col = order_column(df, {'mean': 0, 'coffee':1 }, True)

col
>>>
['mean', 'coffee', 'chicken wings', 'taco']

# you could grab it by doing this

df = df[col]

下面是一个超级简单的方法示例。如果您要从excel复制标题,请使用.split('\t')

df = df['FILE_NAME DISPLAY_PATH SHAREPOINT_PATH RETAILER LAST_UPDATE'.split()]

另一种选择是使用set_index()方法,后跟reset_index()。请注意,我们首先pop()将要移动到数据帧前面的列,以便在重置索引时避免名称冲突:

df.set_index(df.pop('column_name'), inplace=True)
df.reset_index(inplace=True)

有关详细信息,请参阅How to change the order of dataframe columns in panda。