我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。

其他回答

使用T怎么样?

df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T

我想在一个数据帧前面加上两列,我不知道所有列的确切名称,因为它们是从之前的pivot语句生成的。所以,如果你也遇到同样的情况:把你知道名字的列放在前面,然后让它们跟着“所有其他列”,我提出了以下一般解决方案:

df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)

您可以使用可用于两个轴的重新索引:

df
#           0         1         2         3         4      mean
# 0  0.943825  0.202490  0.071908  0.452985  0.678397  0.469921
# 1  0.745569  0.103029  0.268984  0.663710  0.037813  0.363821
# 2  0.693016  0.621525  0.031589  0.956703  0.118434  0.484254
# 3  0.284922  0.527293  0.791596  0.243768  0.629102  0.495336
# 4  0.354870  0.113014  0.326395  0.656415  0.172445  0.324628
# 5  0.815584  0.532382  0.195437  0.829670  0.019001  0.478415
# 6  0.944587  0.068690  0.811771  0.006846  0.698785  0.506136
# 7  0.595077  0.437571  0.023520  0.772187  0.862554  0.538182
# 8  0.700771  0.413958  0.097996  0.355228  0.656919  0.444974
# 9  0.263138  0.906283  0.121386  0.624336  0.859904  0.555009

df.reindex(['mean', *range(5)], axis=1)

#        mean         0         1         2         3         4
# 0  0.469921  0.943825  0.202490  0.071908  0.452985  0.678397
# 1  0.363821  0.745569  0.103029  0.268984  0.663710  0.037813
# 2  0.484254  0.693016  0.621525  0.031589  0.956703  0.118434
# 3  0.495336  0.284922  0.527293  0.791596  0.243768  0.629102
# 4  0.324628  0.354870  0.113014  0.326395  0.656415  0.172445
# 5  0.478415  0.815584  0.532382  0.195437  0.829670  0.019001
# 6  0.506136  0.944587  0.068690  0.811771  0.006846  0.698785
# 7  0.538182  0.595077  0.437571  0.023520  0.772187  0.862554
# 8  0.444974  0.700771  0.413958  0.097996  0.355228  0.656919
# 9  0.555009  0.263138  0.906283  0.121386  0.624336  0.859904

一种简单的方法是用列列表重新分配数据帧,根据需要重新排列。

这就是你现在拥有的:

In [6]: df
Out[6]:
          0         1         2         3         4      mean
0  0.445598  0.173835  0.343415  0.682252  0.582616  0.445543
1  0.881592  0.696942  0.702232  0.696724  0.373551  0.670208
2  0.662527  0.955193  0.131016  0.609548  0.804694  0.632596
3  0.260919  0.783467  0.593433  0.033426  0.512019  0.436653
4  0.131842  0.799367  0.182828  0.683330  0.019485  0.363371
5  0.498784  0.873495  0.383811  0.699289  0.480447  0.587165
6  0.388771  0.395757  0.745237  0.628406  0.784473  0.588529
7  0.147986  0.459451  0.310961  0.706435  0.100914  0.345149
8  0.394947  0.863494  0.585030  0.565944  0.356561  0.553195
9  0.689260  0.865243  0.136481  0.386582  0.730399  0.561593

In [7]: cols = df.columns.tolist()

In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']

按任意方式重新排列列。这是我将最后一个元素移动到第一个位置的方式:

In [12]: cols = cols[-1:] + cols[:-1]

In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]

然后重新排序数据帧,如下所示:

In [16]: df = df[cols]  #    OR    df = df.ix[:, cols]

In [17]: df
Out[17]:
       mean         0         1         2         3         4
0  0.445543  0.445598  0.173835  0.343415  0.682252  0.582616
1  0.670208  0.881592  0.696942  0.702232  0.696724  0.373551
2  0.632596  0.662527  0.955193  0.131016  0.609548  0.804694
3  0.436653  0.260919  0.783467  0.593433  0.033426  0.512019
4  0.363371  0.131842  0.799367  0.182828  0.683330  0.019485
5  0.587165  0.498784  0.873495  0.383811  0.699289  0.480447
6  0.588529  0.388771  0.395757  0.745237  0.628406  0.784473
7  0.345149  0.147986  0.459451  0.310961  0.706435  0.100914
8  0.553195  0.394947  0.863494  0.585030  0.565944  0.356561
9  0.561593  0.689260  0.865243  0.136481  0.386582  0.730399

我尝试了创建一个order函数,您可以使用Stata的order命令对列进行重新排序/移动。最好创建一个py文件(其名称可能是order.py),并将其保存在目录中并调用它的函数

def order(dataframe,cols,f_or_l=None,before=None, after=None):

#만든이: 김완석, Stata로 뚝딱뚝딱 저자, blog.naver.com/sanzo213 운영
# 갖다 쓰시거나 수정을 하셔도 되지만 출처는 꼭 밝혀주세요
# cols옵션 및 befor/after옵션에 튜플이 가능하게끔 수정했으며, 오류문구 수정함(2021.07.12,1)
# 칼럼이 멀티인덱스인 상태에서 reset_index()메소드 사용했을 시 적용안되는 걸 수정함(2021.07.12,2) 

import pandas as pd
if (type(cols)==str) or (type(cols)==int) or (type(cols)==float) or (type(cols)==bool) or type(cols)==tuple:    
    cols=[cols]
    
dd=list(dataframe.columns)
for i in cols:
    i
    dd.remove(i) #cols요소를 제거함
    
if (f_or_l==None) & ((before==None) & (after==None)):
    print('f_or_l옵션을 쓰시거나 아니면 before옵션/after옵션 쓰셔야되요')
    
if ((f_or_l=='first') or (f_or_l=='last')) & ~((before==None) & (after==None)):
    print('f_or_l옵션 사용시 before after 옵션 사용불가입니다.')
    
if (f_or_l=='first') & (before==None) & (after==None):
    new_order=cols+dd
    dataframe=dataframe[new_order]
    return dataframe

if (f_or_l=='last') & (before==None) & (after==None):   
    new_order=dd+cols
    dataframe=dataframe[new_order]
    return dataframe
    
if (before!=None) & (after!=None):
    print('before옵션 after옵션 둘다 쓸 수 없습니다.')
    

if (before!=None) & (after==None) & (f_or_l==None):

    if not((type(before)==str) or (type(before)==int) or (type(before)==float) or
       (type(before)==bool) or ((type(before)!=list)) or 
       ((type(before)==tuple))):
        print('before옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')
    
    else:
        b=dd[:dd.index(before)]
        a=dd[dd.index(before):]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]  
        return dataframe
    
if (after!=None) & (before==None) & (f_or_l==None):

    if not((type(after)==str) or (type(after)==int) or (type(after)==float) or
       (type(after)==bool) or ((type(after)!=list)) or 
       ((type(after)==tuple))):
            
        print('after옵션은 칼럼 하나만 입력가능하며 리스트 형태로도 입력하지 마세요.')  

    else:
        b=dd[:dd.index(after)+1]
        a=dd[dd.index(after)+1:]
        
        new_order=b+cols+a
        dataframe=dataframe[new_order]
        return dataframe

下面的python代码是我制作的order函数的一个示例。我希望您可以使用我的order函数轻松地对列进行重新排序:)

# module

import pandas as pd
import numpy as np
from order import order # call order function from order.py file

# make a dataset

columns='a b c d e f g h i j k'.split()
dic={}

n=-1
for i in columns:
    
    n+=1
    dic[i]=list(range(1+n,10+1+n))
data=pd.DataFrame(dic)
print(data)

# use order function (1) : order column e in the first

data2=order(data,'e',f_or_l='first')
print(data2)

# use order function (2): order column e in the last , "data" dataframe

print(order(data,'e',f_or_l='last'))


# use order function (3) : order column i before column c in "data" dataframe

print(order(data,'i',before='c'))


# use order function (4) : order column g after column b in "data" dataframe

print(order(data,'g',after='b'))

# use order function (4) : order columns ['c', 'd', 'e'] after column i in "data" dataframe

print(order(data,['c', 'd', 'e'],after='i'))