我有以下DataFrame(df):

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))

我通过分配添加更多列:

df['mean'] = df.mean(1)

如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?


当前回答

这个问题以前已经回答过,但reindex_axis现在已被弃用,因此我建议使用:

df = df.reindex(sorted(df.columns), axis=1)

对于那些想要指定他们想要的顺序而不是仅仅对它们进行排序的人来说,下面列出了解决方案:

df = df.reindex(['the','order','you','want'], axis=1)

现在,如何对列名列表排序真的不是熊猫问题,而是Python列表操作问题。有很多方法可以做到这一点,我认为这个答案有一个非常简洁的方法。

其他回答

将任意列移动到任意位置:

import pandas as pd
df = pd.DataFrame({"A": [1,2,3], 
                   "B": [2,4,8], 
                   "C": [5,5,5]})

cols = df.columns.tolist()
column_to_move = "C"
new_position = 1

cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]

我认为这是一个略为简洁的解决方案:

df.insert(0, 'mean', df.pop("mean"))

这个解决方案有点类似于@JoeHeffer的解决方案,但这是一条直线。

这里,我们从数据帧中删除列“mean”,并将其附加到具有相同列名的索引0。

这里有一个非常简单的答案(只有一行)。

在将“n”列添加到df中之后,可以执行以下操作。

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
           0           1           2           3           4        mean
0   0.929616    0.316376    0.183919    0.204560    0.567725    0.440439
1   0.595545    0.964515    0.653177    0.748907    0.653570    0.723143
2   0.747715    0.961307    0.008388    0.106444    0.298704    0.424512
3   0.656411    0.809813    0.872176    0.964648    0.723685    0.805347
4   0.642475    0.717454    0.467599    0.325585    0.439645    0.518551
5   0.729689    0.994015    0.676874    0.790823    0.170914    0.672463
6   0.026849    0.800370    0.903723    0.024676    0.491747    0.449473
7   0.526255    0.596366    0.051958    0.895090    0.728266    0.559587
8   0.818350    0.500223    0.810189    0.095969    0.218950    0.488736
9   0.258719    0.468106    0.459373    0.709510    0.178053    0.414752


### here you can add below line and it should work 
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.

df = df[list(('mean',0, 1, 2,3,4))]
df

        mean           0           1           2           3           4
0   0.440439    0.929616    0.316376    0.183919    0.204560    0.567725
1   0.723143    0.595545    0.964515    0.653177    0.748907    0.653570
2   0.424512    0.747715    0.961307    0.008388    0.106444    0.298704
3   0.805347    0.656411    0.809813    0.872176    0.964648    0.723685
4   0.518551    0.642475    0.717454    0.467599    0.325585    0.439645
5   0.672463    0.729689    0.994015    0.676874    0.790823    0.170914
6   0.449473    0.026849    0.800370    0.903723    0.024676    0.491747
7   0.559587    0.526255    0.596366    0.051958    0.895090    0.728266
8   0.488736    0.818350    0.500223    0.810189    0.095969    0.218950
9   0.414752    0.258719    0.468106    0.459373    0.709510    0.178053

DataFrame.sort_index(axis=1)非常干净。请在此处检查文档。然后凹入

一种简单的方法是用列列表重新分配数据帧,根据需要重新排列。

这就是你现在拥有的:

In [6]: df
Out[6]:
          0         1         2         3         4      mean
0  0.445598  0.173835  0.343415  0.682252  0.582616  0.445543
1  0.881592  0.696942  0.702232  0.696724  0.373551  0.670208
2  0.662527  0.955193  0.131016  0.609548  0.804694  0.632596
3  0.260919  0.783467  0.593433  0.033426  0.512019  0.436653
4  0.131842  0.799367  0.182828  0.683330  0.019485  0.363371
5  0.498784  0.873495  0.383811  0.699289  0.480447  0.587165
6  0.388771  0.395757  0.745237  0.628406  0.784473  0.588529
7  0.147986  0.459451  0.310961  0.706435  0.100914  0.345149
8  0.394947  0.863494  0.585030  0.565944  0.356561  0.553195
9  0.689260  0.865243  0.136481  0.386582  0.730399  0.561593

In [7]: cols = df.columns.tolist()

In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']

按任意方式重新排列列。这是我将最后一个元素移动到第一个位置的方式:

In [12]: cols = cols[-1:] + cols[:-1]

In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]

然后重新排序数据帧,如下所示:

In [16]: df = df[cols]  #    OR    df = df.ix[:, cols]

In [17]: df
Out[17]:
       mean         0         1         2         3         4
0  0.445543  0.445598  0.173835  0.343415  0.682252  0.582616
1  0.670208  0.881592  0.696942  0.702232  0.696724  0.373551
2  0.632596  0.662527  0.955193  0.131016  0.609548  0.804694
3  0.436653  0.260919  0.783467  0.593433  0.033426  0.512019
4  0.363371  0.131842  0.799367  0.182828  0.683330  0.019485
5  0.587165  0.498784  0.873495  0.383811  0.699289  0.480447
6  0.588529  0.388771  0.395757  0.745237  0.628406  0.784473
7  0.345149  0.147986  0.459451  0.310961  0.706435  0.100914
8  0.553195  0.394947  0.863494  0.585030  0.565944  0.356561
9  0.561593  0.689260  0.865243  0.136481  0.386582  0.730399