我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。

我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?


当前回答

子查询通常用于将单行作为原子值返回,不过它们也可以用于用IN关键字比较多行之间的值。在SQL语句中几乎任何有意义的地方都允许使用它们,包括目标列表、WHERE子句等等。一个简单的子查询可以用作搜索条件。例如,在一对表之间:

SELECT title 
FROM books 
WHERE author_id = (
    SELECT id 
    FROM authors 
    WHERE last_name = 'Bar' AND first_name = 'Foo'
);

注意,在子查询的结果上使用普通值操作符要求只返回一个字段。如果你想检查一个值是否存在于一组其他值中,请使用in:

SELECT title 
FROM books 
WHERE author_id IN (
    SELECT id FROM authors WHERE last_name ~ '^[A-E]'
);

这显然不同于LEFT-JOIN,你只是想连接表a和表B的东西,即使连接条件在表B中没有找到任何匹配的记录,等等。

如果你只是担心速度,你必须检查你的数据库,写一个好的查询,看看是否有显著的性能差异。

其他回答

子查询能够动态地计算聚合函数。 例如,找到这本书的最低价格,并得到所有以这个价格出售的书。 1)使用子查询:

SELECT titles, price
FROM Books, Orders
WHERE price = 
(SELECT MIN(price)
 FROM Orders) AND (Books.ID=Orders.ID);

2)使用join

SELECT MIN(price)
     FROM Orders;
-----------------
2.99

SELECT titles, price
FROM Books b
INNER JOIN  Orders o
ON b.ID = o.ID
WHERE o.price = 2.99;

在2010年,我会加入这个问题的作者,并强烈地投票给JOIN,但有了更多的经验(特别是在MySQL),我可以声明:是的,子查询可以更好。我在这里看到了很多答案;一些声明的子查询速度更快,但它缺乏一个很好的解释。我希望我能提供一个(非常)晚的答案:

首先,让我说一下最重要的一点:子查询有不同的形式

第二个重要的陈述:规模很重要

如果使用子查询,应该了解DB-Server如何执行子查询。特别是当子查询只计算一次或每一行时! 另一方面,现代DB-Server能够进行大量优化。在某些情况下,子查询有助于优化查询,但DB-Server的新版本可能会使优化过时。

选择字段中的子查询

SELECT moo, (SELECT roger FROM wilco WHERE moo = me) AS bar FROM foo

注意,对于foo生成的每一行都会执行子查询。 尽可能避免这种情况;它可能会大大降低你在大型数据集上的查询速度。但是,如果子查询没有对foo的引用,则可以由DB-server将其作为静态内容进行优化,并且只能求值一次。

where语句中的子查询

SELECT moo FROM foo WHERE bar = (SELECT roger FROM wilco WHERE moo = me)

如果幸运的话,DB会在内部将其优化为一个JOIN。如果不这样做,你的查询在庞大的数据集上会变得非常非常慢,因为它会对foo中的每一行执行子查询,而不是像在select类型中那样只执行结果。

join语句中的子查询

SELECT moo, bar 
  FROM foo 
    LEFT JOIN (
      SELECT MIN(bar), me FROM wilco GROUP BY me
    ) ON moo = me

This is interesting. We combine JOIN with a sub-query. And here we get the real strength of sub-queries. Imagine a dataset with millions of rows in wilco but only a few distinct me. Instead of joining against a huge table, we have now a smaller temporary table to join against. This can result in much faster queries depending on database size. You can have the same effect with CREATE TEMPORARY TABLE ... and INSERT INTO ... SELECT ..., which might provide better readability on very complex queries (but can lock datasets in a repeatable read isolation level).

嵌套的子查询

SELECT VARIANCE(moo)
  FROM (
    SELECT moo, CONCAT(roger, wilco) AS bar
      FROM foo
      HAVING bar LIKE 'SpaceQ%'
  ) AS temp_foo
  GROUP BY moo

您可以在多个级别中嵌套子查询。如果你必须对结果进行分组或更改,这可以帮助处理庞大的数据集。通常,DB-Server为此创建一个临时表,但有时不需要对整个表进行某些操作,只需要对结果集进行操作。这可能会提供更好的性能,具体取决于表的大小。

结论

子查询不能代替JOIN,您不应该这样使用它们(尽管有可能)。在我看来,子查询的正确用法是作为CREATE TEMPORARY TABLE ....的快速替换一个好的子查询以一种在JOIN的ON语句中无法完成的方式减少数据集。如果子查询具有GROUP BY或DISTINCT关键字之一,并且最好不在选择字段或where语句中,那么它可能会大大提高性能。

使用EXPLAIN查看数据库如何对数据执行查询。这个答案中有一个很大的“视情况而定”……

PostgreSQL可以将子查询重写为连接,或将连接重写为子查询,如果它认为其中一个比另一个快。这完全取决于数据、索引、相关性、数据量、查询等。

我不是关系数据库专家,所以对此持保留态度。

子查询与连接的一般思想是较大查询的求值路径。

为了执行较大的查询,必须首先执行每个子查询,然后将结果集存储为与较大查询交互的临时表。

这个临时表没有索引,因此,任何比较都需要扫描整个结果集。

相反,当您使用连接时,所有索引都在使用中,因此,比较需要遍历索引树(或哈希表),这在速度方面成本要低得多。

现在,我不知道最流行的关系引擎的新版本是否在反向执行求值,只是将必要的元素加载到临时表中,作为优化方法。

A general rule is that joins are faster in most cases (99%). The more data tables have, the subqueries are slower. The less data tables have, the subqueries have equivalent speed as joins. The subqueries are simpler, easier to understand, and easier to read. Most of the web and app frameworks and their "ORM"s and "Active record"s generate queries with subqueries, because with subqueries are easier to split responsibility, maintain code, etc. For smaller web sites or apps subqueries are OK, but for larger web sites and apps you will often have to rewrite generated queries to join queries, especial if a query uses many subqueries in the query.

有人说“一些RDBMS可以将子查询重写为连接,或将连接重写为子查询,当它认为其中一个比另一个快时”,但这句话适用于简单的情况,当然不适用于带有子查询的复杂查询,这实际上会导致性能问题。