我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。
我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?
我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。
我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?
当前回答
我只是在考虑同样的问题,但我在FROM部分使用子查询。 我需要连接和查询大表,“从”表有2800万条记录,但结果只有128个这样小的结果大数据!我在它上面使用MAX()函数。
首先,我使用LEFT JOIN,因为我认为这是正确的方式,mysql可以优化等。 第二次只是为了测试,我重写了针对JOIN的子选择。
LEFT JOIN运行时:1.12s SUB-SELECT运行时间:0.06秒
子选择比连接快18倍!只是在chokito广告。subselect看起来很糟糕,但结果…
其他回答
MySQL版本:5.5.28-0ubuntu0.12.04.2-log
在我的印象中,JOIN总是比MySQL中的子查询更好,但EXPLAIN是更好的判断方式。下面是一个子查询比join更好的例子。
这是我的查询与3个子查询:
EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date
FROM `vote-ranked-listory` vrl
INNER JOIN lists l ON l.list_id = vrl.list_id
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION'
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=43) IS NULL
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=55) IS NULL
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL
ORDER BY vrl.moved_date DESC LIMIT 200;
解释说明:
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| 1 | PRIMARY | vrl | index | PRIMARY | moved_date | 8 | NULL | 200 | Using where |
| 1 | PRIMARY | l | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 1 | PRIMARY | vrlih | eq_ref | PRIMARY | PRIMARY | 9 | ranker.vrl.list_id,ranker.vrl.ontology_id,const | 1 | Using where |
| 1 | PRIMARY | lbs | eq_ref | PRIMARY,idx_list_burial_state,burial_score | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 4 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
| 3 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
| 2 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
使用join的相同查询是:
EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date
FROM `vote-ranked-listory` vrl
INNER JOIN lists l ON l.list_id = vrl.list_id
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION'
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5
LEFT JOIN list_tag lt1 ON lt1.list_id = vrl.list_id AND lt1.tag_id = 43
LEFT JOIN list_tag lt2 ON lt2.list_id = vrl.list_id AND lt2.tag_id = 55
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000
AND lt1.list_id IS NULL AND lt2.tag_id IS NULL
ORDER BY vrl.moved_date DESC LIMIT 200;
输出为:
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| 1 | SIMPLE | lt3 | ref | list_tag_key,list_id,tag_id | tag_id | 5 | const | 2386 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | l | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY | 4 | ranker.lt3.list_id | 1 | Using where |
| 1 | SIMPLE | vrlih | ref | PRIMARY | PRIMARY | 4 | ranker.lt3.list_id | 103 | Using where |
| 1 | SIMPLE | vrl | ref | PRIMARY | PRIMARY | 8 | ranker.lt3.list_id,ranker.vrlih.ontology_id | 65 | Using where |
| 1 | SIMPLE | lt1 | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.lt3.list_id,const | 1 | Using where; Using index; Not exists |
| 1 | SIMPLE | lbs | eq_ref | PRIMARY,idx_list_burial_state,burial_score | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 1 | SIMPLE | lt2 | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.lt3.list_id,const | 1 | Using where; Using index |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
rows列的比较表明了差异,使用join的查询使用的是using temporary;使用filesort。
当然,当我运行这两个查询时,第一个查询在0.02秒内完成,第二个查询甚至在1分钟后都没有完成,所以EXPLAIN正确地解释了这些查询。
如果我在list_tag表上没有INNER JOIN,即如果我删除
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL
从第一个查询和相应的:
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403
从第二个查询开始,那么EXPLAIN为两个查询返回相同的行数,并且这两个查询的运行速度相同。
使用EXPLAIN查看数据库如何对数据执行查询。这个答案中有一个很大的“视情况而定”……
PostgreSQL可以将子查询重写为连接,或将连接重写为子查询,如果它认为其中一个比另一个快。这完全取决于数据、索引、相关性、数据量、查询等。
如果你想用join加速你的查询:
对于“inner join/join”, 不要使用where条件,而是使用“ON”条件。 例如:
select id,name from table1 a
join table2 b on a.name=b.name
where id='123'
Try,
select id,name from table1 a
join table2 b on a.name=b.name and a.id='123'
对于“左/右连接”, 不要在“ON”条件下使用,因为如果你使用左/右连接,它将获得任何一个表的所有行。所以,在"开"里也没用。所以,尝试使用“Where”条件
在2010年,我会加入这个问题的作者,并强烈地投票给JOIN,但有了更多的经验(特别是在MySQL),我可以声明:是的,子查询可以更好。我在这里看到了很多答案;一些声明的子查询速度更快,但它缺乏一个很好的解释。我希望我能提供一个(非常)晚的答案:
首先,让我说一下最重要的一点:子查询有不同的形式
第二个重要的陈述:规模很重要
如果使用子查询,应该了解DB-Server如何执行子查询。特别是当子查询只计算一次或每一行时! 另一方面,现代DB-Server能够进行大量优化。在某些情况下,子查询有助于优化查询,但DB-Server的新版本可能会使优化过时。
选择字段中的子查询
SELECT moo, (SELECT roger FROM wilco WHERE moo = me) AS bar FROM foo
注意,对于foo生成的每一行都会执行子查询。 尽可能避免这种情况;它可能会大大降低你在大型数据集上的查询速度。但是,如果子查询没有对foo的引用,则可以由DB-server将其作为静态内容进行优化,并且只能求值一次。
where语句中的子查询
SELECT moo FROM foo WHERE bar = (SELECT roger FROM wilco WHERE moo = me)
如果幸运的话,DB会在内部将其优化为一个JOIN。如果不这样做,你的查询在庞大的数据集上会变得非常非常慢,因为它会对foo中的每一行执行子查询,而不是像在select类型中那样只执行结果。
join语句中的子查询
SELECT moo, bar
FROM foo
LEFT JOIN (
SELECT MIN(bar), me FROM wilco GROUP BY me
) ON moo = me
This is interesting. We combine JOIN with a sub-query. And here we get the real strength of sub-queries. Imagine a dataset with millions of rows in wilco but only a few distinct me. Instead of joining against a huge table, we have now a smaller temporary table to join against. This can result in much faster queries depending on database size. You can have the same effect with CREATE TEMPORARY TABLE ... and INSERT INTO ... SELECT ..., which might provide better readability on very complex queries (but can lock datasets in a repeatable read isolation level).
嵌套的子查询
SELECT VARIANCE(moo)
FROM (
SELECT moo, CONCAT(roger, wilco) AS bar
FROM foo
HAVING bar LIKE 'SpaceQ%'
) AS temp_foo
GROUP BY moo
您可以在多个级别中嵌套子查询。如果你必须对结果进行分组或更改,这可以帮助处理庞大的数据集。通常,DB-Server为此创建一个临时表,但有时不需要对整个表进行某些操作,只需要对结果集进行操作。这可能会提供更好的性能,具体取决于表的大小。
结论
子查询不能代替JOIN,您不应该这样使用它们(尽管有可能)。在我看来,子查询的正确用法是作为CREATE TEMPORARY TABLE ....的快速替换一个好的子查询以一种在JOIN的ON语句中无法完成的方式减少数据集。如果子查询具有GROUP BY或DISTINCT关键字之一,并且最好不在选择字段或where语句中,那么它可能会大大提高性能。
根据我的观察,就像两种情况,如果一个表的记录少于10万条,那么连接将工作得很快。
但是如果一个表有超过100,000条记录,那么子查询是最好的结果。
我有一个表,其中有500,000条记录,我在查询下面创建了它,它的结果时间是
SELECT *
FROM crv.workorder_details wd
inner join crv.workorder wr on wr.workorder_id = wd.workorder_id;
结果:13.3秒
select *
from crv.workorder_details
where workorder_id in (select workorder_id from crv.workorder)
结果:1.65秒