我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。

我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?


当前回答

只有当第二个连接表的数据明显多于主表时,才会出现这种差异。我有过这样的经历……

我们有一个用户表,有10万个条目,他们的会员数据(友谊)大约有30万个条目。这是一个join语句,目的是获取好友及其数据,但有很大的延迟。但是当成员表中只有少量数据时,它工作得很好。一旦我们将其更改为使用子查询,它就可以正常工作。

但与此同时,连接查询正在处理比主表拥有更少条目的其他表。

所以我认为连接和子查询语句工作得很好,这取决于数据和情况。

其他回答

子查询通常用于将单行作为原子值返回,不过它们也可以用于用IN关键字比较多行之间的值。在SQL语句中几乎任何有意义的地方都允许使用它们,包括目标列表、WHERE子句等等。一个简单的子查询可以用作搜索条件。例如,在一对表之间:

SELECT title 
FROM books 
WHERE author_id = (
    SELECT id 
    FROM authors 
    WHERE last_name = 'Bar' AND first_name = 'Foo'
);

注意,在子查询的结果上使用普通值操作符要求只返回一个字段。如果你想检查一个值是否存在于一组其他值中,请使用in:

SELECT title 
FROM books 
WHERE author_id IN (
    SELECT id FROM authors WHERE last_name ~ '^[A-E]'
);

这显然不同于LEFT-JOIN,你只是想连接表a和表B的东西,即使连接条件在表B中没有找到任何匹配的记录,等等。

如果你只是担心速度,你必须检查你的数据库,写一个好的查询,看看是否有显著的性能差异。

MSDN文档SQL Server说

Many Transact-SQL statements that include subqueries can be alternatively formulated as joins. Other questions can be posed only with subqueries. In Transact-SQL, there is usually no performance difference between a statement that includes a subquery and a semantically equivalent version that does not. However, in some cases where existence must be checked, a join yields better performance. Otherwise, the nested query must be processed for each result of the outer query to ensure elimination of duplicates. In such cases, a join approach would yield better results.

所以如果你需要

select * from t1 where exists select * from t2 where t2.parent=t1.id

尝试使用join代替。在其他情况下,这没有什么区别。

我说:为子查询创建函数可以消除混乱的问题,并允许您为子查询实现额外的逻辑。因此,我建议尽可能为子查询创建函数。

代码中的混乱是一个大问题,几十年来业界一直在努力避免它。

现在,许多dbs都可以优化子查询和连接。因此,您只需使用explain检查您的查询,看看哪个更快。如果在性能上没有太大的差异,我更喜欢使用子查询,因为它们简单,更容易理解。

我认为在引用的答案中没有强调的是重复的问题和可能由特定(使用)案例引起的有问题的结果。

(尽管马塞洛·坎托斯提到过)

我将引用斯坦福大学Lagunita SQL课程的例子。

学生表

+------+--------+------+--------+
| sID  | sName  | GPA  | sizeHS |
+------+--------+------+--------+
|  123 | Amy    |  3.9 |   1000 |
|  234 | Bob    |  3.6 |   1500 |
|  345 | Craig  |  3.5 |    500 |
|  456 | Doris  |  3.9 |   1000 |
|  567 | Edward |  2.9 |   2000 |
|  678 | Fay    |  3.8 |    200 |
|  789 | Gary   |  3.4 |    800 |
|  987 | Helen  |  3.7 |    800 |
|  876 | Irene  |  3.9 |    400 |
|  765 | Jay    |  2.9 |   1500 |
|  654 | Amy    |  3.9 |   1000 |
|  543 | Craig  |  3.4 |   2000 |
+------+--------+------+--------+

应用表

(向特定大学及专业申请)

+------+----------+----------------+----------+
| sID  | cName    | major          | decision |
+------+----------+----------------+----------+
|  123 | Stanford | CS             | Y        |
|  123 | Stanford | EE             | N        |
|  123 | Berkeley | CS             | Y        |
|  123 | Cornell  | EE             | Y        |
|  234 | Berkeley | biology        | N        |
|  345 | MIT      | bioengineering | Y        |
|  345 | Cornell  | bioengineering | N        |
|  345 | Cornell  | CS             | Y        |
|  345 | Cornell  | EE             | N        |
|  678 | Stanford | history        | Y        |
|  987 | Stanford | CS             | Y        |
|  987 | Berkeley | CS             | Y        |
|  876 | Stanford | CS             | N        |
|  876 | MIT      | biology        | Y        |
|  876 | MIT      | marine biology | N        |
|  765 | Stanford | history        | Y        |
|  765 | Cornell  | history        | N        |
|  765 | Cornell  | psychology     | Y        |
|  543 | MIT      | CS             | N        |
+------+----------+----------------+----------+

让我们试着找出申请计算机科学专业的学生的平均绩点(不论大学)

使用子查询:

select GPA from Student where sID in (select sID from Apply where major = 'CS');

+------+
| GPA  |
+------+
|  3.9 |
|  3.5 |
|  3.7 |
|  3.9 |
|  3.4 |
+------+

这个结果集的平均值是:

select avg(GPA) from Student where sID in (select sID from Apply where major = 'CS');

+--------------------+
| avg(GPA)           |
+--------------------+
| 3.6800000000000006 |
+--------------------+

使用连接:

select GPA from Student, Apply where Student.sID = Apply.sID and Apply.major = 'CS';

+------+
| GPA  |
+------+
|  3.9 |
|  3.9 |
|  3.5 |
|  3.7 |
|  3.7 |
|  3.9 |
|  3.4 |
+------+

该结果集的平均值:

select avg(GPA) from Student, Apply where Student.sID = Apply.sID and Apply.major = 'CS';

+-------------------+
| avg(GPA)          |
+-------------------+
| 3.714285714285714 |
+-------------------+

It is obvious that the second attempt yields misleading results in our use case, given that it counts duplicates for the computation of the average value. It is also evident that usage of distinct with the join - based statement will not eliminate the problem, given that it will erroneously keep one out of three occurrences of the 3.9 score. The correct case is to account for TWO (2) occurrences of the 3.9 score given that we actually have TWO (2) students with that score that comply with our query criteria.

在某些情况下,除了性能问题,子查询似乎是最安全的方法。

我只是在考虑同样的问题,但我在FROM部分使用子查询。 我需要连接和查询大表,“从”表有2800万条记录,但结果只有128个这样小的结果大数据!我在它上面使用MAX()函数。

首先,我使用LEFT JOIN,因为我认为这是正确的方式,mysql可以优化等。 第二次只是为了测试,我重写了针对JOIN的子选择。

LEFT JOIN运行时:1.12s SUB-SELECT运行时间:0.06秒

子选择比连接快18倍!只是在chokito广告。subselect看起来很糟糕,但结果…